Câu hỏi:

21/09/2025 11 Lưu

a) Thu gọn đơn thức \[A\] và tìm hệ số, bậc của nó: \[A = - \frac{3}{2}{x^2}{y^4}{x^3}{y^2}.\]

b) Cho hai đa thức: \[M = 2{x^2} - 2xy - {y^2};\,\,N = {x^2} + 2xy + {y^2} - 1.\] Tính giá trị của biểu thức \[M - N\] tại \[x = 1\,;\,\,y = - 2.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Ta có \[A = - \frac{3}{2}{x^2}{y^4}{x^3}{y^2} = - \frac{3}{2}\left( {{x^2}{x^3}} \right)\left( {{y^4}{y^2}} \right) = - \frac{3}{2}{x^5}{y^6}\].

Đơn thức \[A\]hệ số là \[ - \frac{3}{2}\]; bậc là 11.

b) Ta có \[M - N = \left( {2{x^2} - 2xy - {y^2}} \right) - \left( {{x^2} + 2xy + {y^2} - 1} \right)\]

\[ = 2{x^2} - 2xy - {y^2} - {x^2} - 2xy - {y^2} + 1\]

\[ = {x^2} - 4xy - 2{y^2} + 1\].

Thay \(x = 1\,;\,y = - 2\) vào đa thức \[M - N\], ta có

\[M - N = {1^2} - 4 \cdot 1 \cdot \left( { - 2} \right) - 2 \cdot {\left( { - 2} \right)^2} + 1 = 2\].

Vậy với \[x = 1\,;\,\,y = - 2\] thì \[M - N = 2.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

b) \({x^2} - x - {y^2} + y\)

\( = \left( {{x^2} - {y^2}} \right) - \left( {x - y} \right)\)

\( = \left( {x - y} \right)\left( {x + y} \right) - \left( {x - y} \right)\)

\( = \left( {x - y} \right)\left( {x + y - 1} \right)\).

Lời giải

a) \(3{x^2} - \sqrt 3 x + \frac{1}{4}\)

\( = {\sqrt 3 ^2}.{x^2} - 2.\sqrt 3 x.\frac{1}{2} + {\left( {\frac{1}{2}} \right)^2}\)

\( = {\left( {\sqrt 3 x} \right)^2} - 2.\sqrt 3 x.\frac{1}{2} + {\left( {\frac{1}{2}} \right)^2}\)

\( = {\left( {\sqrt 3 x - \frac{1}{2}} \right)^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP