Cho hai đa thức: \(E = {x^7} - 4{x^3}{y^2} - 5xy + 7\) và \(F = {x^7} + 5{x^3}{y^2} - 3xy - 3\).
a) Tìm đa thức \(G\) sao cho \(G = E + F\).
b) Tìm đa thức \(H\) sao cho \(E + H = F\).
Cho hai đa thức: \(E = {x^7} - 4{x^3}{y^2} - 5xy + 7\) và \(F = {x^7} + 5{x^3}{y^2} - 3xy - 3\).
a) Tìm đa thức \(G\) sao cho \(G = E + F\).
b) Tìm đa thức \(H\) sao cho \(E + H = F\).
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Ta có \(G = E + F\)\( = \left( {{x^7} - 4{x^3}{y^2} - 5xy + 7} \right) + \left( {{x^7} + 5{x^3}{y^2} - 3xy - 3} \right)\)
\( = {x^7} - 4{x^3}{y^2} - 5xy + 7 + {x^7} + 5{x^3}{y^2} - 3xy - 3\)
\( = \left( {{x^7} + {x^7}} \right) + \left( { - 4{x^3}{y^2} + 5{x^3}{y^2}} \right) + \left( { - 5xy - 3xy} \right) + \left( {7 - 3} \right)\)
\( = 2{x^7} + {x^3}{y^2} - 8xy + 4\).
Vậy \(G = 2{x^7} + {x^3}{y^2} - 8xy + 4.\)
b) Ta có \(E + H = F\)
Suy ra \(H = F - E\)\( = \left( {{x^7} + 5{x^3}{y^2} - 3xy - 3} \right) - \left( {{x^7} - 4{x^3}{y^2} - 5xy + 7} \right)\)
\( = {x^7} + 5{x^3}{y^2} - 3xy - 3 - {x^7} + 4{x^3}{y^2} + 5xy - 7\)
\( = \left( {{x^7} - {x^7}} \right) + \left( {5{x^3}{y^2} + 4{x^3}{y^2}} \right) + \left( { - 3xy + 5xy} \right) + \left( { - 3 - 7} \right)\)
\( = 9{x^3}{y^2} + 2xy - 10\).
Vậy \(H = 9{x^3}{y^2} + 2xy - 10.\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
a) Ta có \[A = 4\left( {x - 2} \right)\left( {x + 1} \right) + {\left( {2x - 4} \right)^2} + {\left( {x + 1} \right)^2}\]
\( = {\left( {2x - 4} \right)^2} + 2.2\left( {x - 2} \right)\left( {x + 1} \right) + {\left( {x + 1} \right)^2}\)
\( = {\left( {2x - 4} \right)^2} + 2.\left( {2x - 4} \right)\left( {x + 1} \right) + {\left( {x + 1} \right)^2}\)
\( = {\left[ {\left( {2x - 4} \right) + \left( {x + 1} \right)} \right]^2}\)
\( = {\left( {2x - 4 + x + 1} \right)^2}\)
\( = {\left( {3x - 3} \right)^2}\)
\( = {\left[ {3\left( {x - 1} \right)} \right]^2}\)
\( = 9{\left( {x - 1} \right)^2}\).
Do đó \(A = 9{\left( {x - 1} \right)^2}\).
Thay \[x = \frac{1}{2}\] vào \(A\) ta được \(A = 9{\left( {\frac{1}{2} - 1} \right)^2} = 9.{\left( { - \frac{1}{2}} \right)^2} = 9.\frac{1}{4} = \frac{9}{4}\).
Vậy \(A = \frac{9}{4}\) tại \[x = \frac{1}{2}\].
Lời giải
a) \(3{x^2} - \sqrt 3 x + \frac{1}{4}\)
\( = {\sqrt 3 ^2}.{x^2} - 2.\sqrt 3 x.\frac{1}{2} + {\left( {\frac{1}{2}} \right)^2}\)
\( = {\left( {\sqrt 3 x} \right)^2} - 2.\sqrt 3 x.\frac{1}{2} + {\left( {\frac{1}{2}} \right)^2}\)
\( = {\left( {\sqrt 3 x - \frac{1}{2}} \right)^2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.