Chứng minh đẳng thức:\[\left( {x - y} \right)\left( {{x^4} + {x^3}y + {x^2}{y^2} + x{y^3} + {y^4}} \right) = {x^5} - {y^5}\].
Chứng minh đẳng thức:\[\left( {x - y} \right)\left( {{x^4} + {x^3}y + {x^2}{y^2} + x{y^3} + {y^4}} \right) = {x^5} - {y^5}\].
Quảng cáo
Trả lời:
Lời giải:
Ta có \(VT = \left( {x - y} \right)\left( {{x^4} + {x^3}y + {x^2}{y^2} + x{y^3} + {y^4}} \right)\)
\( = x\left( {{x^4} + {x^3}y + {x^2}{y^2} + x{y^3} + {y^4}} \right) - y\left( {{x^4} + {x^3}y + {x^2}{y^2} + x{y^3} + {y^4}} \right)\)
\( = {x^5} + {x^4}y + {x^3}{y^2} + {x^2}{y^3} + x{y^4} - {x^4}y - {x^3}{y^2} - {x^2}{y^3} - x{y^4} - {y^5}\)
\( = \left( {{x^5} - {y^5}} \right) + \left( {{x^4}y - {x^4}y} \right) + \left( {{x^3}{y^2} - {x^3}{y^2}} \right) + \left( {{x^2}{y^3} - {x^2}{y^3}} \right) + \left( {x{y^4} - x{y^4}} \right)\)
\( = {x^5} - {y^5} = VP\).
Suy ra điều phải chứng minh.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
a) Ta có \[A = 4\left( {x - 2} \right)\left( {x + 1} \right) + {\left( {2x - 4} \right)^2} + {\left( {x + 1} \right)^2}\]
\( = {\left( {2x - 4} \right)^2} + 2.2\left( {x - 2} \right)\left( {x + 1} \right) + {\left( {x + 1} \right)^2}\)
\( = {\left( {2x - 4} \right)^2} + 2.\left( {2x - 4} \right)\left( {x + 1} \right) + {\left( {x + 1} \right)^2}\)
\( = {\left[ {\left( {2x - 4} \right) + \left( {x + 1} \right)} \right]^2}\)
\( = {\left( {2x - 4 + x + 1} \right)^2}\)
\( = {\left( {3x - 3} \right)^2}\)
\( = {\left[ {3\left( {x - 1} \right)} \right]^2}\)
\( = 9{\left( {x - 1} \right)^2}\).
Do đó \(A = 9{\left( {x - 1} \right)^2}\).
Thay \[x = \frac{1}{2}\] vào \(A\) ta được \(A = 9{\left( {\frac{1}{2} - 1} \right)^2} = 9.{\left( { - \frac{1}{2}} \right)^2} = 9.\frac{1}{4} = \frac{9}{4}\).
Vậy \(A = \frac{9}{4}\) tại \[x = \frac{1}{2}\].
Lời giải
a) \(3{x^2} - \sqrt 3 x + \frac{1}{4}\)
\( = {\sqrt 3 ^2}.{x^2} - 2.\sqrt 3 x.\frac{1}{2} + {\left( {\frac{1}{2}} \right)^2}\)
\( = {\left( {\sqrt 3 x} \right)^2} - 2.\sqrt 3 x.\frac{1}{2} + {\left( {\frac{1}{2}} \right)^2}\)
\( = {\left( {\sqrt 3 x - \frac{1}{2}} \right)^2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.