Câu hỏi:

21/09/2025 27 Lưu

Phân tích đa thức thành nhân tử rồi tính giá trị của các biểu thức sau:

b) \[B = {x^9} - {x^7} - {x^6} - {x^5} + {x^4} + {x^3} + {x^2} - 1\] tại \(x = 1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

b) Ta có \[B = {x^9} - {x^7} - {x^6} - {x^5} + {x^4} + {x^3} + {x^2} - 1\]

          \( = \left( {{x^9} - {x^7}} \right) - \left( {{x^6} + {x^5}} \right) + \left( {{x^4} + {x^3}} \right) + \left( {{x^2} - 1} \right)\)

          \( = {x^7}\left( {{x^2} - 1} \right) - {x^5}\left( {x + 1} \right) + {x^3}\left( {x + 1} \right) + \left( {x - 1} \right)\left( {x + 1} \right)\)

          \( = {x^7}\left( {x - 1} \right)\left( {x + 1} \right) - {x^5}\left( {x + 1} \right) + {x^3}\left( {x + 1} \right) + \left( {x - 1} \right)\left( {x + 1} \right)\)

          \( = \left( {x + 1} \right)\left[ {{x^7}\left( {x - 1} \right) - {x^5} + {x^3} + \left( {x - 1} \right)} \right]\)

          \( = \left( {x + 1} \right)\left[ {\left( {x - 1} \right)\left( {{x^7} + 1} \right) - \left( {{x^5} - {x^3}} \right)} \right]\)

          \( = \left( {x + 1} \right)\left[ {\left( {x - 1} \right)\left( {{x^7} + 1} \right) - {x^3}\left( {{x^2} - 1} \right)} \right]\)

          \( = \left( {x + 1} \right)\left[ {\left( {x - 1} \right)\left( {{x^7} + 1} \right) - {x^3}\left( {x - 1} \right)\left( {x + 1} \right)} \right]\)

          \( = \left( {x + 1} \right)\left( {x - 1} \right)\left[ {\left( {{x^7} + 1} \right) - {x^3}\left( {x + 1} \right)} \right]\)

          \( = \left( {x + 1} \right)\left( {x - 1} \right)\left( {{x^7} + 1 - {x^4} - {x^3}} \right)\)

          \( = \left( {x + 1} \right)\left( {x - 1} \right)\left[ {\left( {{x^7} - {x^4}} \right) - \left( {{x^3} - 1} \right)} \right]\)

          \( = \left( {x + 1} \right)\left( {x - 1} \right)\left[ {{x^4}\left( {{x^3} - 1} \right) - \left( {{x^3} - 1} \right)} \right]\)

          \( = \left( {x + 1} \right)\left( {x - 1} \right)\left( {{x^3} - 1} \right)\left( {{x^4} - 1} \right)\)

          \( = \left( {x + 1} \right)\left( {x - 1} \right)\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)\left( {{x^2} - 1} \right)\left( {{x^2} + 1} \right)\)

          \( = \left( {x + 1} \right){\left( {x - 1} \right)^2}\left( {{x^2} + x + 1} \right)\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right)\)

          \( = {\left( {x + 1} \right)^2}{\left( {x - 1} \right)^3}\left( {{x^2} + 1} \right)\left( {{x^2} + x + 1} \right)\).

Do đó \(B = {\left( {x + 1} \right)^2}{\left( {x - 1} \right)^3}\left( {{x^2} + 1} \right)\left( {{x^2} + x + 1} \right)\).

Thay \(x = 1\) vào \(B\) ta được \(B = {\left( {1 + 1} \right)^2}{\left( {1 - 1} \right)^3}\left( {{1^2} + 1} \right)\left( {{1^2} + 1 + 1} \right) = 0\).

Vậy \(B = 0\) tại \(x = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

b) \({x^2} - x - {y^2} + y\)

\( = \left( {{x^2} - {y^2}} \right) - \left( {x - y} \right)\)

\( = \left( {x - y} \right)\left( {x + y} \right) - \left( {x - y} \right)\)

\( = \left( {x - y} \right)\left( {x + y - 1} \right)\).

Lời giải

a) \(3{x^2} - \sqrt 3 x + \frac{1}{4}\)

\( = {\sqrt 3 ^2}.{x^2} - 2.\sqrt 3 x.\frac{1}{2} + {\left( {\frac{1}{2}} \right)^2}\)

\( = {\left( {\sqrt 3 x} \right)^2} - 2.\sqrt 3 x.\frac{1}{2} + {\left( {\frac{1}{2}} \right)^2}\)

\( = {\left( {\sqrt 3 x - \frac{1}{2}} \right)^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP