Câu hỏi:

21/09/2025 37 Lưu

Cho biểu thức \[A = \frac{{{x^3} - 1}}{{{x^2} - 4}} \cdot \left( {\frac{1}{{x - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}}} \right).\]

a) Tìm điều kiện xác định của biểu thức \(A.\)

b) Rút gọn biểu thức \(A.\)

c) Tính giá trị của biểu thức \(A\) biết \(\left| {x + 3} \right| = 1.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Ta có \({x^2} - 4 = \left( {x - 2} \right)\left( {x + 2} \right).\)

\({x^2} + x + 1 = {x^2} + 2 \cdot x \cdot \frac{1}{2} + \frac{1}{4} + \frac{3}{4} = {\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4} \ge \frac{3}{4} > 0\) với mọi \(x.\)

Điều kiện xác định của biểu thức \(A\)\({x^2} - 4 \ne 0,\) \(x - 1 \ne 0\) hay \(x - 2 \ne 0,\) \(x + 2 \ne 0\)\(x - 1 \ne 0\), tức là \[x \ne 2,\,\,x \ne - 2\]\(x \ne 1.\)

Vậy điều kiện xác định của biểu thức \(A\)\[x \ne 2,\,\,x \ne - 2\]\(x \ne 1.\)

b) Với \[x \ne 2,\,\,x \ne - 2\]\(x \ne 1,\) ta có:

\[A = \frac{{{x^3} - 1}}{{{x^2} - 4}} \cdot \left( {\frac{1}{{x - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}}} \right)\]

\( = \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{{x^2} - 4}} \cdot \frac{1}{{x - 1}} - \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{{x^2} - 4}} \cdot \frac{{x + 1}}{{{x^2} + x + 1}}\)

\( = \frac{{{x^2} + x + 1}}{{{x^2} - 4}} - \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{{x^2} - 4}}\)

\( = \frac{{{x^2} + x + 1 - \left( {{x^2} - 1} \right)}}{{{x^2} - 4}}\)\( = \frac{{{x^2} + x + 1 - {x^2} + 1}}{{{x^2} - 4}}\)

\[ = \frac{{x + 2}}{{{x^2} - 4}} = \frac{{x + 2}}{{\left( {x + 2} \right)\left( {x - 2} \right)}} = \frac{1}{{x - 2}}.\]

Vậy với \[x \ne 2,\,\,x \ne - 2\]\(x \ne 1,\) thì \(A = \frac{1}{{x - 2}}.\)

c) Ta có \(\left| {x + 3} \right| = 1\) suy ra \(x + 3 = 1\) hoặc \(x + 3 = - 1\)

Do đó \(x = - 2\) (không thỏa mãn điều kiện) hoặc \(x = - 4\) (thỏa mãn điều kiện)

Thay \(x = - 4\) vào biểu thức \(A = \frac{1}{{x - 2}},\) ta được: \(A = \frac{1}{{ - 4 - 2}} = - \frac{1}{6}.\)

Vậy \(A = - \frac{1}{6}\) khi \(\left| {x + 3} \right| = 1.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có \({x^2} + {y^2} - 3x - 3y + xy + 3 = 0\)

\(2{x^2} + 2{y^2} - 6x - 6y + 2xy + 6 = 0\)

\({\left( {x + y - 2} \right)^2} + {\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 0\).

Từ đó suy ra \[x = y = 1.\]

Thay \(x = y = 1\) vào biểu thức Q ta được \(Q = {\left( {1 - 1} \right)^{2023}} + {\left( {1 - 2} \right)^{2024}} + {1^{2025}} = 0 + 1 + 1 = 2\).

Vậy \[Q = 2.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP