Cho biểu thức \[A = \frac{{{x^3} - 1}}{{{x^2} - 4}} \cdot \left( {\frac{1}{{x - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}}} \right).\]
a) Tìm điều kiện xác định của biểu thức \(A.\)
b) Rút gọn biểu thức \(A.\)
c) Tính giá trị của biểu thức \(A\) biết \(\left| {x + 3} \right| = 1.\)
Cho biểu thức \[A = \frac{{{x^3} - 1}}{{{x^2} - 4}} \cdot \left( {\frac{1}{{x - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}}} \right).\]
a) Tìm điều kiện xác định của biểu thức \(A.\)
b) Rút gọn biểu thức \(A.\)
c) Tính giá trị của biểu thức \(A\) biết \(\left| {x + 3} \right| = 1.\)
Quảng cáo
Trả lời:

Hướng dẫn giải
a) Ta có \({x^2} - 4 = \left( {x - 2} \right)\left( {x + 2} \right).\)
\({x^2} + x + 1 = {x^2} + 2 \cdot x \cdot \frac{1}{2} + \frac{1}{4} + \frac{3}{4} = {\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4} \ge \frac{3}{4} > 0\) với mọi \(x.\)
Điều kiện xác định của biểu thức \(A\) là \({x^2} - 4 \ne 0,\) \(x - 1 \ne 0\) hay \(x - 2 \ne 0,\) \(x + 2 \ne 0\) và \(x - 1 \ne 0\), tức là \[x \ne 2,\,\,x \ne - 2\] và \(x \ne 1.\)
Vậy điều kiện xác định của biểu thức \(A\) là \[x \ne 2,\,\,x \ne - 2\] và \(x \ne 1.\)
b) Với \[x \ne 2,\,\,x \ne - 2\] và \(x \ne 1,\) ta có:
\[A = \frac{{{x^3} - 1}}{{{x^2} - 4}} \cdot \left( {\frac{1}{{x - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}}} \right)\]
\( = \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{{x^2} - 4}} \cdot \frac{1}{{x - 1}} - \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{{x^2} - 4}} \cdot \frac{{x + 1}}{{{x^2} + x + 1}}\)
\( = \frac{{{x^2} + x + 1}}{{{x^2} - 4}} - \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{{x^2} - 4}}\)
\( = \frac{{{x^2} + x + 1 - \left( {{x^2} - 1} \right)}}{{{x^2} - 4}}\)\( = \frac{{{x^2} + x + 1 - {x^2} + 1}}{{{x^2} - 4}}\)
\[ = \frac{{x + 2}}{{{x^2} - 4}} = \frac{{x + 2}}{{\left( {x + 2} \right)\left( {x - 2} \right)}} = \frac{1}{{x - 2}}.\]
Vậy với \[x \ne 2,\,\,x \ne - 2\] và \(x \ne 1,\) thì \(A = \frac{1}{{x - 2}}.\)
c) Ta có \(\left| {x + 3} \right| = 1\) suy ra \(x + 3 = 1\) hoặc \(x + 3 = - 1\)
Do đó \(x = - 2\) (không thỏa mãn điều kiện) hoặc \(x = - 4\) (thỏa mãn điều kiện)
Thay \(x = - 4\) vào biểu thức \(A = \frac{1}{{x - 2}},\) ta được: \(A = \frac{1}{{ - 4 - 2}} = - \frac{1}{6}.\)
Vậy \(A = - \frac{1}{6}\) khi \(\left| {x + 3} \right| = 1.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Thể tích kim tự tháp là: \[V = \frac{1}{3}.\,{34^2}.\,21 = 8\,\,092\,\,\left( {{{\rm{m}}^{\rm{3}}}} \right)\].
b) Diện tích một viên gạch hình vuông là: \[S = {\left( {0,6} \right)^2} = 0,36\,\,\left( {{{\rm{m}}^{\rm{2}}}} \right)\]
Số viên gạch hình vuông cần dùng là: \(\frac{{1\,\,000}}{{0,36}} \approx 2\,\,778\) (viên)
c) Số tấm kính hình thoi trên mỗi mặt là: \(\frac{{17\,.\,\left( {17 + 1} \right)}}{2} = 153\) (tấm)
Vậy có 153 tấm kính hình thoi trên mỗi mặt.
Lời giải
Hướng dẫn giải
Biểu thức đại số tính quãng đường Thành phố Hồ Chí Minh đến Bạc Liêu là:
\(s = \left( {9x + 5} \right)\left( {x + 2} \right) = 9{x^2} + 18x + 5x + 10 = 9{x^2} + 23x + 10\,\,{\rm{(km)}}{\rm{.}}\)
Vậy biểu thức đại số tính quãng đường Thành phố Hồ Chí Minh đến Bạc Liêu là \(9{x^2} + 23x + 10\,\,{\rm{(km)}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.