Cho biểu thức \(P = \left( {\frac{{5x + 2}}{{x - 10}} + \frac{{5x - 2}}{{x + 10}}} \right) \cdot \frac{{x - 10}}{{{x^2} + 4}}.\)
a) Tìm điều kiện xác định của \[P.\]
b) Rút gọn biểu thức \[P.\]
c) Tính giá trị của \[P\] khi \[x = \frac{2}{5}.\]
Cho biểu thức \(P = \left( {\frac{{5x + 2}}{{x - 10}} + \frac{{5x - 2}}{{x + 10}}} \right) \cdot \frac{{x - 10}}{{{x^2} + 4}}.\)
a) Tìm điều kiện xác định của \[P.\]
b) Rút gọn biểu thức \[P.\]
c) Tính giá trị của \[P\] khi \[x = \frac{2}{5}.\]
Quảng cáo
Trả lời:

Hướng dẫn giải
a) Với mọi \(x\) ta có \({x^2} \ge 0\) nên \({x^2} + 4 \ge 4 > 0.\)
Do đó biểu thức \(P\) xác định khi và chỉ khi \(x - 10 \ne 0\) và \(x + 10 \ne 0\) hay \(x \ne 10\) và \(x \ne - 10.\)
b) Với \(x \ne 10\) và \(x \ne - 10,\) ta có:
\(P = \left( {\frac{{5x + 2}}{{x - 10}} + \frac{{5x - 2}}{{x + 10}}} \right) \cdot \frac{{x - 10}}{{{x^2} + 4}}\)
\( = \frac{{\left( {5x + 2} \right)\left( {x + 10} \right) + \left( {5x - 2} \right)\left( {x - 10} \right)}}{{\left( {x - 10} \right)\left( {x + 10} \right)}} \cdot \frac{{x - 10}}{{{x^2} + 4}}\)
\( = \frac{{5{x^2} + 50x + 2x + 20 + 5{x^2} - 50x - 2x + 20}}{{\left( {x + 10} \right)\left( {{x^2} + 4} \right)}}\)
\( = \frac{{10{x^2} + 40}}{{\left( {x + 10} \right)\left( {{x^2} + 4} \right)}}\) \( = \frac{{10\left( {{x^2} + 4} \right)}}{{\left( {x + 10} \right)\left( {{x^2} + 4} \right)}} = \frac{{10}}{{x + 10}}.\)
Vậy với \(x \ne 10\) và \(x \ne - 10\) thì \(P = \frac{{10}}{{x + 10}}.\)
c) Thay \[x = \frac{2}{5}\] (thỏa mãn điều kiện) vào biểu thức \(P = \frac{{10}}{{x + 10}},\) ta được:
\(P = \frac{{10}}{{\frac{2}{5} + 10}} = \frac{{10}}{{\frac{{52}}{5}}} = \frac{{25}}{{26}}.\)
Vậy \(P = \frac{{25}}{{26}}\) khi \[x = \frac{2}{5}.\]
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Thể tích kim tự tháp là: \[V = \frac{1}{3}.\,{34^2}.\,21 = 8\,\,092\,\,\left( {{{\rm{m}}^{\rm{3}}}} \right)\].
b) Diện tích một viên gạch hình vuông là: \[S = {\left( {0,6} \right)^2} = 0,36\,\,\left( {{{\rm{m}}^{\rm{2}}}} \right)\]
Số viên gạch hình vuông cần dùng là: \(\frac{{1\,\,000}}{{0,36}} \approx 2\,\,778\) (viên)
c) Số tấm kính hình thoi trên mỗi mặt là: \(\frac{{17\,.\,\left( {17 + 1} \right)}}{2} = 153\) (tấm)
Vậy có 153 tấm kính hình thoi trên mỗi mặt.
Lời giải
Hướng dẫn giải
Ta có \({x^2} + {y^2} - 3x - 3y + xy + 3 = 0\)
\(2{x^2} + 2{y^2} - 6x - 6y + 2xy + 6 = 0\)
\({\left( {x + y - 2} \right)^2} + {\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 0\).
Từ đó suy ra \[x = y = 1.\]
Thay \(x = y = 1\) vào biểu thức Q ta được \(Q = {\left( {1 - 1} \right)^{2023}} + {\left( {1 - 2} \right)^{2024}} + {1^{2025}} = 0 + 1 + 1 = 2\).
Vậy \[Q = 2.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.