a) Một chiếc đèn thả trần có dạng hình chóp tam giác đều có tất cả các cạnh đều khoảng \[20\,\,{\rm{cm}}.\] Độ dài trung đoạn khoảng \[17,32{\rm{ cm}}.\] Tính diện tích xung quanh của chiếc đèn thả trần đó.

b) Cho hình chóp tam giác đều \[S.ABC\] có cạnh đáy bằng \[4\,\,cm\] và chiều cao tam giác đáy là \[3,5\,\,{\rm{cm;}}\] trung đoạn bằng \[5\,\,{\rm{cm}}.\] Tính diện tích xung quanh và diện tích toàn phần (tức là tổng diện tích các mặt) của hình chóp.
a) Một chiếc đèn thả trần có dạng hình chóp tam giác đều có tất cả các cạnh đều khoảng \[20\,\,{\rm{cm}}.\] Độ dài trung đoạn khoảng \[17,32{\rm{ cm}}.\] Tính diện tích xung quanh của chiếc đèn thả trần đó.
Quảng cáo
Trả lời:

Hướng dẫn giải
a) Diện tích xung quanh của chiếc đèn thả trần đó là:
\({S_{xq}} = \frac{1}{2}\,.\,C\,.\,d = \frac{1}{2}\,.\,\left( {3\,.\,20} \right)\,.\,\,17,32 = 519,6\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\)
b) Diện tích xung quanh của hình chóp là:
\({S_{xq}} = \frac{1}{2}\,.\,C\,.\,d = \frac{1}{2}\,.\,\left( {3\,.\,4} \right)\,.\,5 = 30\,\,\left( {c{m^2}} \right)\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Thể tích kim tự tháp là: \[V = \frac{1}{3}.\,{34^2}.\,21 = 8\,\,092\,\,\left( {{{\rm{m}}^{\rm{3}}}} \right)\].
b) Diện tích một viên gạch hình vuông là: \[S = {\left( {0,6} \right)^2} = 0,36\,\,\left( {{{\rm{m}}^{\rm{2}}}} \right)\]
Số viên gạch hình vuông cần dùng là: \(\frac{{1\,\,000}}{{0,36}} \approx 2\,\,778\) (viên)
c) Số tấm kính hình thoi trên mỗi mặt là: \(\frac{{17\,.\,\left( {17 + 1} \right)}}{2} = 153\) (tấm)
Vậy có 153 tấm kính hình thoi trên mỗi mặt.
Lời giải
Hướng dẫn giải
Diện tích của khu vườn hình chữ nhật là:
\[{S_1} = \left( {x + 2} \right)\left( {x - 1} \right) = {x^2} + 2x - x - 2 = {x^2} + x - 2\,\,({{\rm{m}}^{\rm{2}}})\].
Diện tích khu vườn hình vuông là:
\[{S_2} = {\left( {x + 1} \right)^2} = {x^2} + 2x + 1\,\,({{\rm{m}}^{\rm{2}}}).\]
Biểu thức đại số tính tổng diện tích của hai khu vườn trên là:
\[S = {S_1} + {S_2} = \left( {{x^2} + x - 2} \right) + \left( {{x^2} + 2x + 1} \right)\]
\[ = {x^2} + x - 2 + {x^2} + 2x + 1\]
\[ = \left( {{x^2} + {x^2}} \right) + \left( {2x + x} \right) + \left( {1 - 2} \right)\]
\[ = 2{x^2} + 3x - 1\,\,({{\rm{m}}^{\rm{2}}})\].
Vậy biểu thức đại số tính tổng diện tích của hai khu vườn trên là \[2{x^2} + 3x - 1\,\,({{\rm{m}}^{\rm{2}}}).\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.