Câu hỏi:

21/09/2025 19 Lưu

a) Một chiếc đèn thả trần có dạng hình chóp tam giác đều có tất cả các cạnh đều khoảng \[20\,\,{\rm{cm}}.\] Độ dài trung đoạn khoảng \[17,32{\rm{ cm}}.\] Tính diện tích xung quanh của chiếc đèn thả trần đó.

Tính diện tích xung quanh của chiếc đèn thả trần đó. (ảnh 1)

b) Cho hình chóp tam giác đều \[S.ABC\] có cạnh đáy bằng \[4\,\,cm\] và chiều cao tam giác đáy là \[3,5\,\,{\rm{cm;}}\] trung đoạn bằng \[5\,\,{\rm{cm}}.\] Tính diện tích xung quanh và diện tích toàn phần (tức là tổng diện tích các mặt) của hình chóp.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Diện tích xung quanh của chiếc đèn thả trần đó là:

\({S_{xq}} = \frac{1}{2}\,.\,C\,.\,d = \frac{1}{2}\,.\,\left( {3\,.\,20} \right)\,.\,\,17,32 = 519,6\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\)

b) Diện tích xung quanh của hình chóp là:

\({S_{xq}} = \frac{1}{2}\,.\,C\,.\,d = \frac{1}{2}\,.\,\left( {3\,.\,4} \right)\,.\,5 = 30\,\,\left( {c{m^2}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Diện tích của khu vườn hình chữ nhật là:

\[{S_1} = \left( {x + 2} \right)\left( {x - 1} \right) = {x^2} + 2x - x - 2 = {x^2} + x - 2\,\,({{\rm{m}}^{\rm{2}}})\].

Diện tích khu vườn hình vuông là:

\[{S_2} = {\left( {x + 1} \right)^2} = {x^2} + 2x + 1\,\,({{\rm{m}}^{\rm{2}}}).\]

Biểu thức đại số tính tổng diện tích của hai khu vườn trên là:

\[S = {S_1} + {S_2} = \left( {{x^2} + x - 2} \right) + \left( {{x^2} + 2x + 1} \right)\]

\[ = {x^2} + x - 2 + {x^2} + 2x + 1\]

\[ = \left( {{x^2} + {x^2}} \right) + \left( {2x + x} \right) + \left( {1 - 2} \right)\]

\[ = 2{x^2} + 3x - 1\,\,({{\rm{m}}^{\rm{2}}})\].

Vậy biểu thức đại số tính tổng diện tích của hai khu vườn trên là \[2{x^2} + 3x - 1\,\,({{\rm{m}}^{\rm{2}}}).\]