Câu hỏi:

21/09/2025 14 Lưu

Chứng minh đẳng thức sau:

\(\left( {x + y} \right)\left( {{x^4} - {x^3}y + {x^2}{y^2} - x{y^3} + {y^4}} \right) = {x^5} + {y^5}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Ta có \[VT = \left( {x + y} \right)\left( {{x^4} - {x^3}y + {x^2}{y^2} - x{y^3} + {y^4}} \right)\]

\[ = {x^5} - {x^4}y + {x^3}{y^2} - {x^2}{y^3} + x{y^4} + y{x^4} - {x^3}{y^2} + {x^2}{y^3} - x{y^4} + {y^5}\]

\[ = {x^5} + \left( { - {x^4}y + y{x^4}} \right) + \left( {{x^3}{y^2} - {x^3}{y^2}} \right) + \left( { - {x^2}{y^3} + {x^2}{y^3}} \right) + \left( {x{y^4} - x{y^4}} \right) + {y^5}\]

\[ = {x^5} + {y^5} = VP\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Diện tích của khu vườn hình chữ nhật là:

\[{S_1} = \left( {x + 2} \right)\left( {x - 1} \right) = {x^2} + 2x - x - 2 = {x^2} + x - 2\,\,({{\rm{m}}^{\rm{2}}})\].

Diện tích khu vườn hình vuông là:

\[{S_2} = {\left( {x + 1} \right)^2} = {x^2} + 2x + 1\,\,({{\rm{m}}^{\rm{2}}}).\]

Biểu thức đại số tính tổng diện tích của hai khu vườn trên là:

\[S = {S_1} + {S_2} = \left( {{x^2} + x - 2} \right) + \left( {{x^2} + 2x + 1} \right)\]

\[ = {x^2} + x - 2 + {x^2} + 2x + 1\]

\[ = \left( {{x^2} + {x^2}} \right) + \left( {2x + x} \right) + \left( {1 - 2} \right)\]

\[ = 2{x^2} + 3x - 1\,\,({{\rm{m}}^{\rm{2}}})\].

Vậy biểu thức đại số tính tổng diện tích của hai khu vườn trên là \[2{x^2} + 3x - 1\,\,({{\rm{m}}^{\rm{2}}}).\]