Câu hỏi:

21/09/2025 17 Lưu

Cho các số \(x,y\) thỏa mãn đẳng thức: \(5{x^2} + 5{y^2} + 8xy - 2x + 2y + 2 = 0.\) Tính giá trị của biểu thức \(M = {\left( {x + y} \right)^{2023}} + {\left( {x - 2} \right)^{2024}} + {\left( {y + 1} \right)^{2025}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Ta có \(A = - {x^2} + 2xy - 4{y^2} + 2x + 10y - 3.\)

Suy ra \( - A = {x^2} - 2xy + 4{y^2} - 2x - 10y + 3\)

\( = {x^2} - 2x\left( {y + 1} \right) + {\left( {y + 1} \right)^2} + 4{y^2} - 10y + 3 - {\left( {y + 1} \right)^2}\)

\( = \left[ {{x^2} - 2x\left( {y + 1} \right) + {{\left( {y + 1} \right)}^2}} \right] + 3{y^2} - 12y + 2\)

\[ = {\left[ {x - \left( {y + 1} \right)} \right]^2} + 3\left( {{y^2} - 4y + 4} \right) - 10\]

\[ = {\left( {x - y - 1} \right)^2} + 3{\left( {y - 2} \right)^2} - 10\].

Do đó \[A = - {\left( {x - y - 1} \right)^2} - 3{\left( {y - 2} \right)^2} + 10\].

Nhận xét: \[ - {\left( {x - y - 1} \right)^2} \le 0;\,\,\, - 3{\left( {y - 2} \right)^2} \le 0\] với mọi \(x,y\).

Suy ra \[A = - {\left( {x - y - 1} \right)^2} - 3{\left( {y - 2} \right)^2} + 10 \le 10\].

Dấu “=” xảy ra khi và chỉ khi \[\left\{ \begin{array}{l} - {\left( {x - y - 1} \right)^2} = 0\\ - 3{\left( {y - 2} \right)^2} = 0\end{array} \right.\], tức là \[\left\{ \begin{array}{l}x - y - 1 = 0\\y - 2 = 0\end{array} \right.\] hay \[\left\{ \begin{array}{l}x = 3\\y = 2\end{array} \right.\].

Vậy giá trị lớn nhất của biểu thức \(A\) là 10 khi \(\left( {x;y} \right) = \left( {3;2} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Biểu thức đại số tính quãng đường Thành phố Hồ Chí Minh đến Bạc Liêu là:

\(s = \left( {9x + 5} \right)\left( {x + 2} \right) = 9{x^2} + 18x + 5x + 10 = 9{x^2} + 23x + 10\,\,{\rm{(km)}}{\rm{.}}\)

Vậy biểu thức đại số tính quãng đường Thành phố Hồ Chí Minh đến Bạc Liêu là \(9{x^2} + 23x + 10\,\,{\rm{(km)}}{\rm{.}}\)