Chứng minh rằng nếu \[{a^4} + {b^4} + {c^4} + {d^4} = 4abcd\] và \(a,\,\,b,\,\,c,\,\,d\) là các số dương thì \[a = b = c = d.\]
Chứng minh rằng nếu \[{a^4} + {b^4} + {c^4} + {d^4} = 4abcd\] và \(a,\,\,b,\,\,c,\,\,d\) là các số dương thì \[a = b = c = d.\]
Quảng cáo
Trả lời:

Hướng dẫn giải
Vì \({a^4} + {b^4} + {c^4} + {d^4} = 4abcd\) nên \({a^4} + {b^4} + {c^4} + {d^4} - 4abcd = 0\). (*)
Ta có \({a^4} + {b^4} + {c^4} + {d^4} - 4abcd\)
\( = \left( {{a^4} - 2{a^2}{b^2} + {b^4}} \right) + \left( {{c^4} - 2{c^2}{d^2} + {d^4}} \right) + \left( {2{a^2}{b^2} - 4abcd + 2{c^2}{d^{^2}}} \right)\)
\( = \left[ {{{\left( {{a^2}} \right)}^2} - 2{a^2}{b^2} + {{\left( {{b^2}} \right)}^2}} \right] + \left[ {{{\left( {{c^2}} \right)}^2} - 2{c^2}{d^2} + {{\left( {{d^2}} \right)}^2}} \right] + 2\left[ {{{\left( {ab} \right)}^2} - 2ab.cd + {{\left( {cd} \right)}^2}} \right]\)
\( = {\left( {{a^2} - {b^2}} \right)^2} + {\left( {{c^2} - {d^2}} \right)^2} + 2{\left( {ab - cd} \right)^2}\).
Từ (*) suy ra \({\left( {{a^2} - {b^2}} \right)^2} + {\left( {{c^2} - {d^2}} \right)^2} + 2{\left( {ab - cd} \right)^2} = 0\). (**)
Mà \({\left( {{a^2} - {b^2}} \right)^2} \ge 0\,,\,\,{\left( {{c^2} - {d^2}} \right)^2} \ge 0\,,\,\,2{\left( {ab - cd} \right)^2} \ge 0\) với mọi \(a,\,\,b,\,\,c,\,\,d\).
Do đó (**) xảy ra khi \(\left\{ \begin{array}{l}{a^2} - {b^2} = 0\\{c^2} - {d^2} = 0\\ab - cd = 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}\left( {a + b} \right)\left( {a - b} \right) = 0\\\left( {c + d} \right)\left( {c - d} \right) = 0\\ab - cd = 0\end{array} \right.\).
Khi đó .
Mà \(a,\,\,b,\,\,c,\,\,d\) là các số dương nên \(a = b = c = d\).
Từ đó suy ra điều phải chứng minh.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Thể tích kim tự tháp là: \[V = \frac{1}{3}.\,{34^2}.\,21 = 8\,\,092\,\,\left( {{{\rm{m}}^{\rm{3}}}} \right)\].
b) Diện tích một viên gạch hình vuông là: \[S = {\left( {0,6} \right)^2} = 0,36\,\,\left( {{{\rm{m}}^{\rm{2}}}} \right)\]
Số viên gạch hình vuông cần dùng là: \(\frac{{1\,\,000}}{{0,36}} \approx 2\,\,778\) (viên)
c) Số tấm kính hình thoi trên mỗi mặt là: \(\frac{{17\,.\,\left( {17 + 1} \right)}}{2} = 153\) (tấm)
Vậy có 153 tấm kính hình thoi trên mỗi mặt.
Lời giải
Hướng dẫn giải
Biểu thức đại số tính quãng đường Thành phố Hồ Chí Minh đến Bạc Liêu là:
\(s = \left( {9x + 5} \right)\left( {x + 2} \right) = 9{x^2} + 18x + 5x + 10 = 9{x^2} + 23x + 10\,\,{\rm{(km)}}{\rm{.}}\)
Vậy biểu thức đại số tính quãng đường Thành phố Hồ Chí Minh đến Bạc Liêu là \(9{x^2} + 23x + 10\,\,{\rm{(km)}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.