Câu hỏi:

21/09/2025 40 Lưu

Tìm \(m,\,\,n \in \mathbb{N}\) để phép chia sau đây là phép chia hết:

\(\left( {4{x^6}{y^7} - 10{x^5}{y^6} + 8{x^4}{y^5}} \right):\left( { - 4{x^m}{y^n}} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Để đa thức \(4{x^6}{y^7} - 10{x^5}{y^6} + 8{x^4}{y^5}\) chia hết cho đơn thức \( - 4{x^m}{y^n}\) thì mọi hạng tử của đa thức \(4{x^6}{y^7} - 10{x^5}{y^6} + 8{x^4}{y^5}\) đều phải chia hết cho đơn thức \( - 4{x^m}{y^n}\).

Khi đó ta cần có: Số mũ của \(x\) và số mũ của \(y\) trong \( - 4{x^m}{y^n}\) nhỏ hơn hoặc bằng số mũ của \(x\) và số mũ của \(y\) trong mọi hạng tử của \(4{x^6}{y^7} - 10{x^5}{y^6} + 8{x^4}{y^5}\), tức là phải có \(\left\{ \begin{array}{l}m \le 6\\m \le 5\\m \le 4\\n \le 7\\n \le 6\\n \le 5\end{array} \right.\).

Khi đó ta tìm được \(m \le 4\)\(n \le 5\).

\(m,\,\,n \in \mathbb{N}\), do đó \(m \in \left\{ {0\,;\,\,1\,;\,\,2\,;\,\,3\,;\,\,4} \right\}\)\(n \in \left\{ {0\,;\,\,1\,;\,\,2\,;\,\,3\,;\,\,4\,;\,\,5} \right\}\).

Vậy \(m \in \left\{ {0\,;\,\,1\,;\,\,2\,;\,\,3\,;\,\,4} \right\}\)\(n \in \left\{ {0\,;\,\,1\,;\,\,2\,;\,\,3\,;\,\,4\,;\,\,5} \right\}\) thì thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có \({x^2} + {y^2} - 3x - 3y + xy + 3 = 0\)

\(2{x^2} + 2{y^2} - 6x - 6y + 2xy + 6 = 0\)

\({\left( {x + y - 2} \right)^2} + {\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 0\).

Từ đó suy ra \[x = y = 1.\]

Thay \(x = y = 1\) vào biểu thức Q ta được \(Q = {\left( {1 - 1} \right)^{2023}} + {\left( {1 - 2} \right)^{2024}} + {1^{2025}} = 0 + 1 + 1 = 2\).

Vậy \[Q = 2.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP