Câu hỏi:

21/09/2025 16 Lưu

Cho các số thực \(a,\,\,b,\,\,c\) thoả mãn \({a^2} + {b^2} + {c^2} = 3\)\(a + b + c + ab + bc + ca = 6.\) Tính giá trị của biểu thức \[A = \frac{{{a^9} + {b^{11}} + {c^{2025}}}}{{{a^{2023}} + {b^{2024}} + {c^{2025}}}}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

\({a^2} + {b^2} + {c^2} = 3\)\(a + b + c + ab + bc + ca = 6.\)

Suy ra \[3\left( {{a^2} + {b^2} + {c^2} + 1} \right) = 2\left( {ab + bc + ca + a + b + c} \right)\]

\[3{a^2} + 3{b^2} + 3{c^2} + 3 = 2ab + 2bc + 2ca + 2a + 2b + 2c\]

\[\left( {{a^2} - 2ab + {b^2}} \right) + \left( {{b^2} - 2bc + {c^2}} \right) + \left( {{c^2} - 2ca + {a^2}} \right) + \left( {{a^2} - 2a + 1} \right) + \left( {{b^2} - 2b + 1} \right) + \left( {{c^2} - 2c + 1} \right) = 0\]

\[{\left( {a - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {c - a} \right)^2} + {\left( {a - 1} \right)^2} + {\left( {b - 1} \right)^2} + {\left( {c - 1} \right)^2} = 0\]

\[\left\{ \begin{array}{l}{\left( {a - b} \right)^2} = {\left( {b - c} \right)^2} = {\left( {c - a} \right)^2} = 0\\{\left( {a - 1} \right)^2} = {\left( {b - 1} \right)^2} = {\left( {c - 1} \right)^2} = 0\end{array} \right.\]

\[\left\{ \begin{array}{l}a - b = b - c = c - a = 0\\a - 1 = b - 1 = c - 1 = 0\end{array} \right.\]

\[a = b = c = 1\].

Do đó \[A = \frac{{{a^9} + {b^{11}} + {c^{2025}}}}{{{a^{2023}} + {b^{2024}} + {c^{2025}}}} = \frac{{{1^9} + {1^{11}} + {1^{2025}}}}{{{1^{2023}} + {1^{2024}} + {1^{2025}}}} = \frac{{1 + 1 + 1}}{{1 + 1 + 1}} = 1.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Diện tích của khu vườn hình chữ nhật là:

\[{S_1} = \left( {x + 2} \right)\left( {x - 1} \right) = {x^2} + 2x - x - 2 = {x^2} + x - 2\,\,({{\rm{m}}^{\rm{2}}})\].

Diện tích khu vườn hình vuông là:

\[{S_2} = {\left( {x + 1} \right)^2} = {x^2} + 2x + 1\,\,({{\rm{m}}^{\rm{2}}}).\]

Biểu thức đại số tính tổng diện tích của hai khu vườn trên là:

\[S = {S_1} + {S_2} = \left( {{x^2} + x - 2} \right) + \left( {{x^2} + 2x + 1} \right)\]

\[ = {x^2} + x - 2 + {x^2} + 2x + 1\]

\[ = \left( {{x^2} + {x^2}} \right) + \left( {2x + x} \right) + \left( {1 - 2} \right)\]

\[ = 2{x^2} + 3x - 1\,\,({{\rm{m}}^{\rm{2}}})\].

Vậy biểu thức đại số tính tổng diện tích của hai khu vườn trên là \[2{x^2} + 3x - 1\,\,({{\rm{m}}^{\rm{2}}}).\]