Câu hỏi:

21/09/2025 14 Lưu

a) Tìm giá trị lớn nhất của phân thức \(A = \frac{{35}}{{{x^2} - 2x + 6}}\).

b) Tìm giá trị nhỏ nhất của phân thức \[B = \frac{{12}}{{12 - 4x - {x^2}}}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Ta có \({x^2} - 2x + 6 = {x^2} - 2x + 1 + 5 = {\left( {x - 1} \right)^2} + 5\).

\({\left( {x - 1} \right)^2} \ge 0\) nên \({\left( {x - 1} \right)^2} + 5 \ge 5\).

Để phân thức \(A\) đạt giá trị lớn nhất thì biểu thức \({x^2} - 2x + 5\) đạt giá trị nhỏ nhất.

Khi đó, \(A = \frac{{35}}{{{x^2} - 2x + 6}} = \frac{{35}}{{{{\left( {x - 1} \right)}^2} + 5}} \le \frac{{35}}{5} = 7\).

Dấu xảy ra khi và chỉ khi \({\left( {x - 1} \right)^2} = 0\) hay \(x = 1\).

 Vậy giá trị lớn nhất của phân thức \(A\) là 7 khi \(x = 1\).

b) Tìm giá trị nhỏ nhất của \[B = \frac{{12}}{{12 - 4x - {x^2}}}\].

Ta có \(12 - 4x - {x^2} = - {x^2} - 4x - 4 + 16 = - {\left( {x + 4} \right)^2} + 16\).

\( - {\left( {x + 4} \right)^2} \le 0\) nên \( - {\left( {x + 4} \right)^2} + 16 \le 16\).

Để phân thức \(B\) đạt giá trị nhỏ nhất thì biểu thức \[12 - 4x - {x^2}\] đạt giá trị lớn nhất.

Khi đó, \[B = \frac{{12}}{{12 - 4x - {x^2}}} = \frac{{12}}{{ - {{\left( {x + 4} \right)}^2} + 16}} \le \frac{{12}}{{16}} = \frac{3}{4}\].

Dấu xảy ra khi và chỉ khi \({\left( {x + 4} \right)^2} = 0\) hay \(x = - 4\).

 Vậy giá trị lớn nhất của phân thức \(B\)\[\frac{3}{4}\] khi \(x = - 4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Diện tích của khu vườn hình chữ nhật là:

\[{S_1} = \left( {x + 2} \right)\left( {x - 1} \right) = {x^2} + 2x - x - 2 = {x^2} + x - 2\,\,({{\rm{m}}^{\rm{2}}})\].

Diện tích khu vườn hình vuông là:

\[{S_2} = {\left( {x + 1} \right)^2} = {x^2} + 2x + 1\,\,({{\rm{m}}^{\rm{2}}}).\]

Biểu thức đại số tính tổng diện tích của hai khu vườn trên là:

\[S = {S_1} + {S_2} = \left( {{x^2} + x - 2} \right) + \left( {{x^2} + 2x + 1} \right)\]

\[ = {x^2} + x - 2 + {x^2} + 2x + 1\]

\[ = \left( {{x^2} + {x^2}} \right) + \left( {2x + x} \right) + \left( {1 - 2} \right)\]

\[ = 2{x^2} + 3x - 1\,\,({{\rm{m}}^{\rm{2}}})\].

Vậy biểu thức đại số tính tổng diện tích của hai khu vườn trên là \[2{x^2} + 3x - 1\,\,({{\rm{m}}^{\rm{2}}}).\]