a) Tìm giá trị lớn nhất của phân thức \(A = \frac{{35}}{{{x^2} - 2x + 6}}\).
b) Tìm giá trị nhỏ nhất của phân thức \[B = \frac{{12}}{{12 - 4x - {x^2}}}\].
a) Tìm giá trị lớn nhất của phân thức \(A = \frac{{35}}{{{x^2} - 2x + 6}}\).
b) Tìm giá trị nhỏ nhất của phân thức \[B = \frac{{12}}{{12 - 4x - {x^2}}}\].
Quảng cáo
Trả lời:

Hướng dẫn giải
a) Ta có \({x^2} - 2x + 6 = {x^2} - 2x + 1 + 5 = {\left( {x - 1} \right)^2} + 5\).
Vì \({\left( {x - 1} \right)^2} \ge 0\) nên \({\left( {x - 1} \right)^2} + 5 \ge 5\).
Để phân thức \(A\) đạt giá trị lớn nhất thì biểu thức \({x^2} - 2x + 5\) đạt giá trị nhỏ nhất.
Khi đó, \(A = \frac{{35}}{{{x^2} - 2x + 6}} = \frac{{35}}{{{{\left( {x - 1} \right)}^2} + 5}} \le \frac{{35}}{5} = 7\).
Dấu xảy ra khi và chỉ khi \({\left( {x - 1} \right)^2} = 0\) hay \(x = 1\).
Vậy giá trị lớn nhất của phân thức \(A\) là 7 khi \(x = 1\).
b) Tìm giá trị nhỏ nhất của \[B = \frac{{12}}{{12 - 4x - {x^2}}}\].
Ta có \(12 - 4x - {x^2} = - {x^2} - 4x - 4 + 16 = - {\left( {x + 4} \right)^2} + 16\).
Vì \( - {\left( {x + 4} \right)^2} \le 0\) nên \( - {\left( {x + 4} \right)^2} + 16 \le 16\).
Để phân thức \(B\) đạt giá trị nhỏ nhất thì biểu thức \[12 - 4x - {x^2}\] đạt giá trị lớn nhất.
Khi đó, \[B = \frac{{12}}{{12 - 4x - {x^2}}} = \frac{{12}}{{ - {{\left( {x + 4} \right)}^2} + 16}} \le \frac{{12}}{{16}} = \frac{3}{4}\].
Dấu xảy ra khi và chỉ khi \({\left( {x + 4} \right)^2} = 0\) hay \(x = - 4\).
Vậy giá trị lớn nhất của phân thức \(B\) là \[\frac{3}{4}\] khi \(x = - 4\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Thể tích kim tự tháp là: \[V = \frac{1}{3}.\,{34^2}.\,21 = 8\,\,092\,\,\left( {{{\rm{m}}^{\rm{3}}}} \right)\].
b) Diện tích một viên gạch hình vuông là: \[S = {\left( {0,6} \right)^2} = 0,36\,\,\left( {{{\rm{m}}^{\rm{2}}}} \right)\]
Số viên gạch hình vuông cần dùng là: \(\frac{{1\,\,000}}{{0,36}} \approx 2\,\,778\) (viên)
c) Số tấm kính hình thoi trên mỗi mặt là: \(\frac{{17\,.\,\left( {17 + 1} \right)}}{2} = 153\) (tấm)
Vậy có 153 tấm kính hình thoi trên mỗi mặt.
Lời giải
Hướng dẫn giải
Diện tích của khu vườn hình chữ nhật là:
\[{S_1} = \left( {x + 2} \right)\left( {x - 1} \right) = {x^2} + 2x - x - 2 = {x^2} + x - 2\,\,({{\rm{m}}^{\rm{2}}})\].
Diện tích khu vườn hình vuông là:
\[{S_2} = {\left( {x + 1} \right)^2} = {x^2} + 2x + 1\,\,({{\rm{m}}^{\rm{2}}}).\]
Biểu thức đại số tính tổng diện tích của hai khu vườn trên là:
\[S = {S_1} + {S_2} = \left( {{x^2} + x - 2} \right) + \left( {{x^2} + 2x + 1} \right)\]
\[ = {x^2} + x - 2 + {x^2} + 2x + 1\]
\[ = \left( {{x^2} + {x^2}} \right) + \left( {2x + x} \right) + \left( {1 - 2} \right)\]
\[ = 2{x^2} + 3x - 1\,\,({{\rm{m}}^{\rm{2}}})\].
Vậy biểu thức đại số tính tổng diện tích của hai khu vườn trên là \[2{x^2} + 3x - 1\,\,({{\rm{m}}^{\rm{2}}}).\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.