Câu hỏi:

22/09/2025 16 Lưu

Một trường học cùng tham gia chương trình gây quỹ bằng cách tiết kiệm điện trong 15 ngày liên tiếp. Các nhân viên trong trường đưa ra hai phương án tiết kiệm điện như sau:

− Phương án 1: Ngày đầu tiên, trường tiết kiệm được \(\frac{1}{2}\) số điện, và ngày thứ hai trở đi, số điện tiết kiệm mỗi ngày gấp đôi ngày trước đó.

− Phướng án 2: Mỗi ngày trường đều tiết kiệm được 65 số điện.

Sau 15 ngày, điện lực sẽ quy đổi số điện mà nhóm tiết kiệm được thành tiền ủng hộ quỹ, với mức \(1{\rm{ }}000\) đồng/số.

Hỏi trường thực hiện phương án nào thì tiết kiệm được nhiều điện hơn? Và tiết kiệm được bao nhiêu tiền?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét phương án 1, ta có:

Ngày thứ nhất trường tiết kiệm được \(\frac{1}{2}\) số điện.

Ngày thứ hai trường tiết kiệm được \(\frac{1}{2} \cdot 2 = 1\) (số điện).

Ngày thứ ba trường tiết kiệm được \(\frac{1}{2} \cdot {2^2} = 2\) (số điện)

….

Ngày thứ mười lăm trường tiết kiệm được \(\frac{1}{2} \cdot {2^{14}} = {2^{13}}\) (số điện)

Do đó, sau mười lăm ngày, trường tiết kiệm được số điện là: \(S = \frac{1}{2} + 1 + 2 + {2^2} + .... + {2^{13}}\) (số điện).

Ta có: \(2S = 1 + 2 + {2^2} + ... + {2^{14}}\)

Do đó, \(2S - S = 1 + 2 + {2^2} + ... + {2^{14}} - \left( {\frac{1}{2} + 1 + 2 + ... + {2^{13}}} \right)\)

\(S = {2^{14}} - \frac{1}{2} = 16{\rm{ }}383,15\) (số điện)

Xét phương án 2, trường sẽ tiết kiệm được số điện là: \(65 \cdot 15 = 975\) (số điện).

Nhận thấy phương án 1 sẽ tiết kiệm được nhiều số điện hơn.

Do đó, nếu chọn phương án 1 thì trường sẽ tiết kiệm được số tiền là:

\(16383,5 \cdot 1{\rm{ }}000 = 16{\rm{ 383 }}500\) (đồng).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có: \({\left( {x + \frac{{2021}}{{2022}}} \right)^2} \ge 0\) với mọi \(x \in \mathbb{R}\)

\(\left| {y - \frac{{2022}}{{2023}}} \right| \ge 0\) với mọi \(y \in \mathbb{R}\)

Khi đó \({\left( {x + \frac{{2021}}{{2022}}} \right)^2} + \left| {y - \frac{{2022}}{{2023}}} \right| \le 0\) nên \({\left( {x + \frac{{2021}}{{2022}}} \right)^2} + \left| {y - \frac{{2022}}{{2023}}} \right| = 0\)

Do đó \(\left\{ \begin{array}{l}x + \frac{{2021}}{{2022}} = 0\\y - \frac{{2022}}{{2023}} = 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}x = - \frac{{2021}}{{2022}}\\y = \frac{{2022}}{{2023}}\end{array} \right.\).

Lời giải

Hướng dẫn giải

Ta có \(VT = \left| {2x + 3} \right| + \left| {2x - 1} \right| = \left| {2x + 3} \right| + \left| {1 - 2x} \right| \ge \left| {2x + 3 + 1 - 2x} \right| = 4\).

Ta có \({\left( {x + 1} \right)^2} \ge 0\) suy ra \(3{\left( {x + 1} \right)^2} \ge 0\) nên \(3{\left( {x + 1} \right)^2} + 2 \ge 2\).

Do đó \(VP = \frac{8}{{3{{\left( {x + 1} \right)}^2} + 2}} \le 4\).

Ta thấy \(\left\{ \begin{array}{l}VT \ge 4\\VP \le 4\end{array} \right.\). Mà \(VT = VP\) nên \(VT = VP = 4\).

Khi đó \(\left\{ \begin{array}{l}x + 1 = 0\\\left( {2x + 3} \right)\left( {1 - 2x} \right) > 0\end{array} \right.\) nên \(x = - 1\).

Vậy \(x = - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP