Câu hỏi:

22/09/2025 44 Lưu

Cả ba vòi nước cùng chảy vào một bể nước. Nếu vòi thứ nhất và vòi thứ hai cùng chảy thì sau 6 giờ được \(\frac{3}{5}\) bể. Nếu vòi thứ hai và vòi thứ ba cùng chảy thì sau 5 giờ được \(\frac{7}{{12}}\) bể. Nếu vòi thứ nhất và vòi thứ ba cùng chảy thì sau 9 giờ chảy được \(\frac{3}{4}\) bể. Hỏi mất bao lâu để ba vòi cùng chảy đầy bể?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trong một giờ, vòi thứ nhất và vòi thứ hai cùng chảy được: \(\frac{3}{5}:6 = \frac{1}{{10}}\) (bể).

Trong một giờ, vòi thứ hai và vòi thứ ba cùng chảy được: \(\frac{7}{{12}}:5 = \frac{7}{{60}}\) (bể).

Trong một giờ, vòi thứ ba và vòi thứ nhất cùng chảy được: \(\frac{3}{4}:9 = \frac{1}{{12}}\) (bể).

Một giờ cả ba vòi cùng chảy được: \(\left( {\frac{1}{{10}} + \frac{7}{{60}} + \frac{1}{{12}}} \right):2 = \frac{3}{{20}}\) (bể).

Vậy thời gian để ba vòi cùng chảy đầy bể là: \(1:\frac{3}{{20}} = \frac{{20}}{3}\) (giờ).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có \(25 - {y^2} = 8{\left( {x - 2005} \right)^2}\) nên x20052=25y281

\(x,\,y\) là các số nguyên dương và \({\left( {x - 2005} \right)^2} \ge 0\) nên \(\left( 1 \right)\) suy ra \[0 < y \le 5\,;\,\,25 - {y^2} \in B\left( 8 \right).\]

Ta lập bảng sau:

\(y\)

\(1\)

\(2\)

\(3\)

\(4\)

\(5\)

\(25 - {y^2}\)

\(24\)

\(21\)

\(16\)

\(9\)

\(0\)

\({\left( {x - 2005} \right)^2}\)

3

Không thỏa mãn

2

Không thỏa mãn

\(0\)

\(x\)

Không thỏa mãn

Không thỏa mãn

Không thỏa mãn

Không thỏa mãn

\(2005\)

Vậy \(x = 2005\,;\,\,y = 5\) thỏa yêu cầu bài toán.

Lời giải

Hướng dẫn giải

Ta có: \({\left( {x + \frac{{2021}}{{2022}}} \right)^2} \ge 0\) với mọi \(x \in \mathbb{R}\)

\(\left| {y - \frac{{2022}}{{2023}}} \right| \ge 0\) với mọi \(y \in \mathbb{R}\)

Khi đó \({\left( {x + \frac{{2021}}{{2022}}} \right)^2} + \left| {y - \frac{{2022}}{{2023}}} \right| \le 0\) nên \({\left( {x + \frac{{2021}}{{2022}}} \right)^2} + \left| {y - \frac{{2022}}{{2023}}} \right| = 0\)

Do đó \(\left\{ \begin{array}{l}x + \frac{{2021}}{{2022}} = 0\\y - \frac{{2022}}{{2023}} = 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}x = - \frac{{2021}}{{2022}}\\y = \frac{{2022}}{{2023}}\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP