Tìm \[x\]:
a) \[\frac{{x + 1}}{{99}} + \frac{{x + 2}}{{98}} + \frac{{x + 3}}{{97}} + \frac{{x + 4}}{{96}} = - 4\];
Tìm \[x\]:
a) \[\frac{{x + 1}}{{99}} + \frac{{x + 2}}{{98}} + \frac{{x + 3}}{{97}} + \frac{{x + 4}}{{96}} = - 4\];
Quảng cáo
Trả lời:

a) \[\frac{{x + 1}}{{99}} + \frac{{x + 2}}{{98}} + \frac{{x + 3}}{{97}} + \frac{{x + 4}}{{96}} = - 4\]
\[x\left( {\frac{1}{{99}} + \frac{1}{{98}} + \frac{1}{{97}} + \frac{1}{{96}}} \right) + \left( {\frac{1}{{99}} + \frac{2}{{98}} + \frac{3}{{97}} + \frac{4}{{96}}} \right) = - 4\]
\[x\left( {\frac{1}{{99}} + \frac{1}{{98}} + \frac{1}{{97}} + \frac{1}{{96}}} \right) = - \left( {1 + \frac{1}{{99}}} \right) - \left( {1 + \frac{2}{{98}}} \right) - \left( {1 + \frac{3}{{97}}} \right) - \left( {1 + \frac{4}{{96}}} \right)\]
\[x\left( {\frac{1}{{99}} + \frac{1}{{98}} + \frac{1}{{97}} + \frac{1}{{96}}} \right) = - \frac{{100}}{{99}} - \frac{{100}}{{98}} - \frac{{100}}{{97}} - \frac{{100}}{{96}}\]
\[x\left( {\frac{1}{{99}} + \frac{1}{{98}} + \frac{1}{{97}} + \frac{1}{{96}}} \right) = - 100.\left( {\frac{1}{{99}} + \frac{1}{{98}} + \frac{1}{{97}} + \frac{1}{{96}}} \right)\]
\[x = - 100\].
Vậy \[x = - 100\].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Kẻ đường thẳng qua \(C\) và song song với \[AB\].
Mà \(AB\,{\rm{//}}\,DE\) nên đường thẳng đó cũng song song với \[DE\].
Do đó \({\widehat C_1} + \widehat {ABC} = 180^\circ \) và \(\widehat {{C_2}} + \widehat {CDE} = 180^\circ \) (hai góc trong cùng phía)
Do đó, \[{\widehat C_1} = 60^\circ \] và \[\,{\widehat C_2} = 45^\circ \].
Suy ra \[\widehat {BCD} = 180^\circ - 60^\circ - 45^\circ = 75^\circ \].
Lời giải
a) Ta có: \(xy \bot AB\) và \(mn \bot AB\) nên \(xy\parallel mn.\)
b) Ta có: \(\widehat {DCB} + \widehat {DCn} = 180^\circ \) (hai góc kề bù).
Suy ra \(\widehat {DCB} = 180^\circ - \widehat {DCn} = 180^\circ - 70^\circ = 110^\circ \).
Vì \(xy\parallel mn\) suy ra \(\widehat {DCB} = \widehat {CDy} = 110^\circ \) (hai góc so le trong).
c) Vì \(DE\) là tia phân giác của \(\widehat {CDy}\) nên \(\widehat {CDE} = \widehat {EDy} = \frac{{\widehat {CDy}}}{2} = \frac{{110^\circ }}{2} = 55^\circ \).
Vì \(xy\parallel mn\) suy ra \(\widehat {ECD} = \widehat {ADC} = 70^\circ \) (hai góc so le trong)
Mà \(\widehat {ADE} = \widehat {ADC} + \widehat {CDE} = 70^\circ + 55^\circ = 125^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.