Câu hỏi:

23/09/2025 30 Lưu

Tìm \[x\]:

a) \[\frac{{x + 1}}{{99}} + \frac{{x + 2}}{{98}} + \frac{{x + 3}}{{97}} + \frac{{x + 4}}{{96}} = - 4\];

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \[\frac{{x + 1}}{{99}} + \frac{{x + 2}}{{98}} + \frac{{x + 3}}{{97}} + \frac{{x + 4}}{{96}} = - 4\]

\[x\left( {\frac{1}{{99}} + \frac{1}{{98}} + \frac{1}{{97}} + \frac{1}{{96}}} \right) + \left( {\frac{1}{{99}} + \frac{2}{{98}} + \frac{3}{{97}} + \frac{4}{{96}}} \right) = - 4\]

\[x\left( {\frac{1}{{99}} + \frac{1}{{98}} + \frac{1}{{97}} + \frac{1}{{96}}} \right) = - \left( {1 + \frac{1}{{99}}} \right) - \left( {1 + \frac{2}{{98}}} \right) - \left( {1 + \frac{3}{{97}}} \right) - \left( {1 + \frac{4}{{96}}} \right)\]

\[x\left( {\frac{1}{{99}} + \frac{1}{{98}} + \frac{1}{{97}} + \frac{1}{{96}}} \right) = - \frac{{100}}{{99}} - \frac{{100}}{{98}} - \frac{{100}}{{97}} - \frac{{100}}{{96}}\]

\[x\left( {\frac{1}{{99}} + \frac{1}{{98}} + \frac{1}{{97}} + \frac{1}{{96}}} \right) =  - 100.\left( {\frac{1}{{99}} + \frac{1}{{98}} + \frac{1}{{97}} + \frac{1}{{96}}} \right)\]

\[x = - 100\].

Vậy \[x = - 100\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Kẻ đường thẳng qua \(C\) và song song với \[AB\].

\(AB\,{\rm{//}}\,DE\) nên đường thẳng đó cũng song song với \[DE\].

Do đó \({\widehat C_1} + \widehat {ABC} = 180^\circ \)\(\widehat {{C_2}} + \widehat {CDE} = 180^\circ \) (hai góc trong cùng phía)

Do đó, \[{\widehat C_1} = 60^\circ \]\[\,{\widehat C_2} = 45^\circ \].

Suy ra \[\widehat {BCD} = 180^\circ - 60^\circ - 45^\circ = 75^\circ \].

Lời giải

Cho hình vẽ dưới đây biết \(\widehat {DCn} = 70^\circ \).   a) Chứng minh \(xy\parallel mn.\) b) Tính số đo góc \(\widehat {DCy}\). c) Kẻ tia phân giác của \(\widehat {DCy}\) cắt đường thẳng \(mn\) tại \(E\). Tính số đo góc \(\widehat {ADE}\). (ảnh 2)

a) Ta có: \(xy \bot AB\)\(mn \bot AB\) nên \(xy\parallel mn.\)

b) Ta có: \(\widehat {DCB} + \widehat {DCn} = 180^\circ \) (hai góc kề bù).

Suy ra \(\widehat {DCB} = 180^\circ - \widehat {DCn} = 180^\circ - 70^\circ = 110^\circ \).

\(xy\parallel mn\) suy ra \(\widehat {DCB} = \widehat {CDy} = 110^\circ \) (hai góc so le trong).

c) Vì \(DE\) là tia phân giác của \(\widehat {CDy}\) nên \(\widehat {CDE} = \widehat {EDy} = \frac{{\widehat {CDy}}}{2} = \frac{{110^\circ }}{2} = 55^\circ \).

\(xy\parallel mn\) suy ra \(\widehat {ECD} = \widehat {ADC} = 70^\circ \) (hai góc so le trong)

\(\widehat {ADE} = \widehat {ADC} + \widehat {CDE} = 70^\circ + 55^\circ = 125^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP