Câu hỏi:

23/09/2025 17 Lưu

Tìm \[x\]:

b) \[\frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ... + \frac{1}{{x\left( {x + 1} \right)}} = \frac{{2008}}{{2009}}\];

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

b) \[\frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ... + \frac{1}{{x\left( {x + 1} \right)}} = \frac{{2008}}{{2009}}\]

\[\frac{{2 - 1}}{{1.2}} + \frac{{3 - 2}}{{2.3}} + \frac{{4 - 3}}{{3.4}} + ... + \frac{{\left( {x + 1} \right) - x}}{{x\left( {x + 1} \right)}} = \frac{{2008}}{{2009}}\]

\[\frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + ... + \frac{1}{x} - \frac{1}{{x + 1}} = \frac{{2008}}{{2009}}\]

\[\frac{1}{1} - \frac{1}{{x + 1}} = \frac{{2008}}{{2009}}\]

\[\frac{x}{{x + 1}} = \frac{{2008}}{{2009}}\]

\[\frac{{2009x - 2008\left( {x + 1} \right)}}{{2009\left( {x + 1} \right)}} = 0\]

\[2009x - 2008x - 2008 = 0\]

\[x - 2008 = 0\]

\[x = 2008\].

Vậy \[x = 2008\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

d) \(D = \left| {2x - 1} \right| + \left| {2x - 5} \right|\)

Ta có: \(\left| {2x - 1} \right| + \left| {2x - 5} \right| = \left| {2x - 1} \right| + \left| {5 - 2x} \right| \ge \left| {2x - 1 + 5 - 2x} \right|\)

Suy ra \(\left| {2x - 1} \right| + \left| {5 - 2x} \right| \ge 4\) hay \(D \ge 4\).

Dấu “=” xảy ra khi và chỉ khi: \(\left( {2x - 1} \right)\left( {5 - 2x} \right) \ge 0\).

TH1: \(\left\{ \begin{array}{l}2x - 1 \ge 0\\5 - 2x \ge 0\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}x \ge \frac{1}{2}\\x \le \frac{5}{2}\end{array} \right.\) hay \(\frac{1}{2} \le x \le \frac{5}{2}\).

TH2: \(\left\{ \begin{array}{l}2x - 1 \le 0\\5 - 2x \le 0\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}x \le \frac{1}{2}\\x \ge \frac{5}{2}\end{array} \right.\) (loại).

Vậy giá trị nhỏ nhất của biểu thức \(D = 4\) khi và chỉ khi \(\frac{1}{2} \le x \le \frac{5}{2}\).

Lời giải

a) \(A = \frac{5}{{2x - 3}}\)

Điều kiện \(2x - 3 \ne 0\) hay \(x \ne \frac{3}{2}\).

Để \(A\) có giá trị nguyên thì \(5 \vdots \left( {2x - 3} \right)\) hay \(\left( {2x - 3} \right)\) là ước của \(5\).

Mà các ước của \(5\) là: \( - 5; - 1;1;5.\)

Ta có bảng sau:

\(2x - 3\)

\( - 5\)

\( - 1\)

\(1\)

\(5\)

\(x\)

\( - 1\)

\(1\)

\(2\)

\(4\)

\(x \in \mathbb{Z}\) nên \(x \in \left\{ { - 1;1;2;4} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP