Câu hỏi:

23/09/2025 19 Lưu

Tìm \[x\]

c) \[\frac{{x - 214}}{{86}} + \frac{{x - 132}}{{84}} + \frac{{x - 54}}{{82}} = 6\];

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

c) \[\frac{{x - 214}}{{86}} + \frac{{x - 132}}{{84}} + \frac{{x - 54}}{{82}} = 6\]

\[x\left( {\frac{1}{{86}} + \frac{1}{{84}} + \frac{1}{{82}}} \right) = 6 + \frac{{214}}{{86}} + \frac{{132}}{{84}} + \frac{{54}}{{82}}\]

\[x\left( {\frac{1}{{86}} + \frac{1}{{84}} + \frac{1}{{82}}} \right) = \left( {1 + \frac{{214}}{{86}}} \right) + \left( {2 + \frac{{132}}{{84}}} \right) + \left( {3 + \frac{{54}}{{82}}} \right)\]

\[x\left( {\frac{1}{{86}} + \frac{1}{{84}} + \frac{1}{{82}}} \right) = \frac{{300}}{{86}} + \frac{{300}}{{84}} + \frac{{300}}{{82}}\]

\[x\left( {\frac{1}{{86}} + \frac{1}{{84}} + \frac{1}{{82}}} \right) = 300\left( {\frac{1}{{86}} + \frac{1}{{84}} + \frac{1}{{82}}} \right)\]

\[x = 300\]

Vậy \[x = 300\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có: \(\widehat {MNz} = \widehat {xMy} = 60^\circ \) (gt)

Mà hai góc ở vị trí đồng vị nên \(My\parallel Nz.\)

b) Ta có: \(My\parallel Pt\) (gt) mà \(My\parallel Nz\) (cmt) nên \(Nz\parallel Pt.\)

c) Ta có: \(\widehat {xNz} + \widehat {zNP} = \widehat {xNP} = 85^\circ \) nên \(\widehat {zNP} = \widehat {xNP} - xNz = 85^\circ - 60^\circ = 25^\circ \).

\(Nz\parallel Pt\) nên \(\widehat {zNP} = \widehat {NPt} = 25^\circ \).

Vậy \(\widehat {NPt} = 25^\circ \).

Lời giải

d) \(D = \left| {2x - 1} \right| + \left| {2x - 5} \right|\)

Ta có: \(\left| {2x - 1} \right| + \left| {2x - 5} \right| = \left| {2x - 1} \right| + \left| {5 - 2x} \right| \ge \left| {2x - 1 + 5 - 2x} \right|\)

Suy ra \(\left| {2x - 1} \right| + \left| {5 - 2x} \right| \ge 4\) hay \(D \ge 4\).

Dấu “=” xảy ra khi và chỉ khi: \(\left( {2x - 1} \right)\left( {5 - 2x} \right) \ge 0\).

TH1: \(\left\{ \begin{array}{l}2x - 1 \ge 0\\5 - 2x \ge 0\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}x \ge \frac{1}{2}\\x \le \frac{5}{2}\end{array} \right.\) hay \(\frac{1}{2} \le x \le \frac{5}{2}\).

TH2: \(\left\{ \begin{array}{l}2x - 1 \le 0\\5 - 2x \le 0\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}x \le \frac{1}{2}\\x \ge \frac{5}{2}\end{array} \right.\) (loại).

Vậy giá trị nhỏ nhất của biểu thức \(D = 4\) khi và chỉ khi \(\frac{1}{2} \le x \le \frac{5}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP