Tìm \[x\]
c) \[\frac{{x - 214}}{{86}} + \frac{{x - 132}}{{84}} + \frac{{x - 54}}{{82}} = 6\];
c) \[\frac{{x - 214}}{{86}} + \frac{{x - 132}}{{84}} + \frac{{x - 54}}{{82}} = 6\];
Quảng cáo
Trả lời:

c) \[\frac{{x - 214}}{{86}} + \frac{{x - 132}}{{84}} + \frac{{x - 54}}{{82}} = 6\]
\[x\left( {\frac{1}{{86}} + \frac{1}{{84}} + \frac{1}{{82}}} \right) = 6 + \frac{{214}}{{86}} + \frac{{132}}{{84}} + \frac{{54}}{{82}}\]
\[x\left( {\frac{1}{{86}} + \frac{1}{{84}} + \frac{1}{{82}}} \right) = \left( {1 + \frac{{214}}{{86}}} \right) + \left( {2 + \frac{{132}}{{84}}} \right) + \left( {3 + \frac{{54}}{{82}}} \right)\]
\[x\left( {\frac{1}{{86}} + \frac{1}{{84}} + \frac{1}{{82}}} \right) = \frac{{300}}{{86}} + \frac{{300}}{{84}} + \frac{{300}}{{82}}\]
\[x\left( {\frac{1}{{86}} + \frac{1}{{84}} + \frac{1}{{82}}} \right) = 300\left( {\frac{1}{{86}} + \frac{1}{{84}} + \frac{1}{{82}}} \right)\]
\[x = 300\]
Vậy \[x = 300\].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có: \(\widehat {MNz} = \widehat {xMy} = 60^\circ \) (gt)
Mà hai góc ở vị trí đồng vị nên \(My\parallel Nz.\)
b) Ta có: \(My\parallel Pt\) (gt) mà \(My\parallel Nz\) (cmt) nên \(Nz\parallel Pt.\)
c) Ta có: \(\widehat {xNz} + \widehat {zNP} = \widehat {xNP} = 85^\circ \) nên \(\widehat {zNP} = \widehat {xNP} - xNz = 85^\circ - 60^\circ = 25^\circ \).
Có \(Nz\parallel Pt\) nên \(\widehat {zNP} = \widehat {NPt} = 25^\circ \).
Vậy \(\widehat {NPt} = 25^\circ \).
Lời giải
d) \(D = \left| {2x - 1} \right| + \left| {2x - 5} \right|\)
Ta có: \(\left| {2x - 1} \right| + \left| {2x - 5} \right| = \left| {2x - 1} \right| + \left| {5 - 2x} \right| \ge \left| {2x - 1 + 5 - 2x} \right|\)
Suy ra \(\left| {2x - 1} \right| + \left| {5 - 2x} \right| \ge 4\) hay \(D \ge 4\).
Dấu “=” xảy ra khi và chỉ khi: \(\left( {2x - 1} \right)\left( {5 - 2x} \right) \ge 0\).
TH1: \(\left\{ \begin{array}{l}2x - 1 \ge 0\\5 - 2x \ge 0\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}x \ge \frac{1}{2}\\x \le \frac{5}{2}\end{array} \right.\) hay \(\frac{1}{2} \le x \le \frac{5}{2}\).
TH2: \(\left\{ \begin{array}{l}2x - 1 \le 0\\5 - 2x \le 0\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}x \le \frac{1}{2}\\x \ge \frac{5}{2}\end{array} \right.\) (loại).
Vậy giá trị nhỏ nhất của biểu thức \(D = 4\) khi và chỉ khi \(\frac{1}{2} \le x \le \frac{5}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.