Cho 4 số thực \(a\), \(b\), \(c\), \(d\) khác 0 thỏa mãn \(a + b + c + d \ne 0\) và
\(\frac{{2a + b + c + d}}{c} = \frac{{a + 2b + c + d}}{b} = \frac{{a + b + 2c + d}}{c} = \frac{{a + b + c + 2d}}{d}\).
Tìm giá trị của biểu thức \(M\), biết \(M = \frac{{a + b}}{{c + d}} + \frac{{b + c}}{{d + a}} + \frac{{c + d}}{{a + b}} + \frac{{d + a}}{{b + c}}\).
Cho 4 số thực \(a\), \(b\), \(c\), \(d\) khác 0 thỏa mãn \(a + b + c + d \ne 0\) và
\(\frac{{2a + b + c + d}}{c} = \frac{{a + 2b + c + d}}{b} = \frac{{a + b + 2c + d}}{c} = \frac{{a + b + c + 2d}}{d}\).
Tìm giá trị của biểu thức \(M\), biết \(M = \frac{{a + b}}{{c + d}} + \frac{{b + c}}{{d + a}} + \frac{{c + d}}{{a + b}} + \frac{{d + a}}{{b + c}}\).
Quảng cáo
Trả lời:

Hướng dẫn giải
Ta có
\(\frac{{2a + b + c + d}}{a} = \frac{{a + 2\;b + c + d}}{b} = \frac{{a + b + 2c + d}}{c} = \frac{{a + b + c + 2\;d}}{{\;d}}\)
\(\frac{{2a + b + c + d}}{a} - 1 = \frac{{a + 2\;b + c + d}}{b} - 1 = \frac{{a + b + 2c + d}}{c} - 1 = \frac{{a + b + c + 2\;d}}{{\;d}} - 1\)
\(\frac{{2a + b + c + d - a}}{a} = \frac{{a + 2\;b + c + d - b}}{b} = \frac{{a + b + 2c + d - c}}{c} = \frac{{a + b + c + 2\;d - d}}{{\;d}}\)
\(\frac{{a + b + c + d}}{a} = \frac{{a + b + c + d}}{b} = \frac{{a + b + c + d}}{c} = \frac{{a + b + c + d}}{{\;d}}\) \(\left( 1 \right)\)
Vì \(a + b + c + d \ne 0\) nên từ \(\left( 1 \right)\) suy ra: \(\frac{1}{a} = \frac{1}{b} = \frac{1}{c} = \frac{1}{{\;d}}\) hay \(a = b = c = d\).
Với \(a\), \(b\), \(c\), \(d\) khác 0, thay \(b = a\); \(c = a\) và \(d = a\) vào biểu thức \(M\) ta được:
\(M = \frac{{a + b}}{{c + d}} + \frac{{b + c}}{{d + a}} + \frac{{c + d}}{{a + b}} + \frac{{d + a}}{{b + c}} = \frac{{2a}}{{2a}} + \frac{{2a}}{{2a}} + \frac{{2a}}{{2a}} + \frac{{2a}}{{2a}} = 1 + 1 + 1 + 1 = 4\).
Vậy \(M = 4\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
d) \(D = \left| {2x - 1} \right| + \left| {2x - 5} \right|\)
Ta có: \(\left| {2x - 1} \right| + \left| {2x - 5} \right| = \left| {2x - 1} \right| + \left| {5 - 2x} \right| \ge \left| {2x - 1 + 5 - 2x} \right|\)
Suy ra \(\left| {2x - 1} \right| + \left| {5 - 2x} \right| \ge 4\) hay \(D \ge 4\).
Dấu “=” xảy ra khi và chỉ khi: \(\left( {2x - 1} \right)\left( {5 - 2x} \right) \ge 0\).
TH1: \(\left\{ \begin{array}{l}2x - 1 \ge 0\\5 - 2x \ge 0\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}x \ge \frac{1}{2}\\x \le \frac{5}{2}\end{array} \right.\) hay \(\frac{1}{2} \le x \le \frac{5}{2}\).
TH2: \(\left\{ \begin{array}{l}2x - 1 \le 0\\5 - 2x \le 0\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}x \le \frac{1}{2}\\x \ge \frac{5}{2}\end{array} \right.\) (loại).
Vậy giá trị nhỏ nhất của biểu thức \(D = 4\) khi và chỉ khi \(\frac{1}{2} \le x \le \frac{5}{2}\).
Lời giải
a) \(A = \frac{5}{{2x - 3}}\)
Điều kiện \(2x - 3 \ne 0\) hay \(x \ne \frac{3}{2}\).
Để \(A\) có giá trị nguyên thì \(5 \vdots \left( {2x - 3} \right)\) hay \(\left( {2x - 3} \right)\) là ước của \(5\).
Mà các ước của \(5\) là: \( - 5; - 1;1;5.\)
Ta có bảng sau:
\(2x - 3\) |
\( - 5\) |
\( - 1\) |
\(1\) |
\(5\) |
\(x\) |
\( - 1\) |
\(1\) |
\(2\) |
\(4\) |
Vì \(x \in \mathbb{Z}\) nên \(x \in \left\{ { - 1;1;2;4} \right\}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.