Câu hỏi:

22/09/2025 38 Lưu

Cho \[a,\,\,b,\,\,c\] là ba số thực khác 0 thỏa mãn điều kiện \(\frac{{a + b - c}}{c} = \frac{{b + c - a}}{a} = \frac{{c + a - b}}{b}.\) Tính giá trị biểu thức \[B = \left( {1 + \frac{b}{a}} \right)\left( {1 + \frac{a}{c}} \right)\left( {1 + \frac{c}{b}} \right)\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Áp dụng tính chất dãy tỉ số bằng nhau, ta có

\(\frac{{a + b - c}}{c} = \frac{{b + c - a}}{a} = \frac{{c + a - b}}{b} = \frac{{a + b - c + b + c - a + c + a - b}}{{c + a + b}} = \frac{{a + b + c}}{{a + b + c}} = 1\)

Suy ra \[a + b - c = c\] suy ra \[a + b = 2c\];

\[b + c - a = a\] suy ra \[b + c = 2a\];

\[c + a - b = b\] suy ra \[c + a = 2b\].

\[B = \left( {1 + \frac{b}{a}} \right)\left( {1 + \frac{a}{c}} \right)\left( {1 + \frac{c}{b}} \right) = \frac{{a + b}}{a} \cdot \frac{{c + a}}{c} \cdot \frac{{b + c}}{b} = \frac{{2c}}{a} \cdot \frac{{2b}}{c} \cdot \frac{{2a}}{b} = 8\]

Vậy \[B = 8\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Kẻ đường thẳng qua \(C\) và song song với \[AB\].

\(AB\,{\rm{//}}\,DE\) nên đường thẳng đó cũng song song với \[DE\].

Do đó \({\widehat C_1} + \widehat {ABC} = 180^\circ \)\(\widehat {{C_2}} + \widehat {CDE} = 180^\circ \) (hai góc trong cùng phía)

Do đó, \[{\widehat C_1} = 60^\circ \]\[\,{\widehat C_2} = 45^\circ \].

Suy ra \[\widehat {BCD} = 180^\circ - 60^\circ - 45^\circ = 75^\circ \].

Lời giải

Cho hình vẽ dưới đây biết \(\widehat {DCn} = 70^\circ \).   a) Chứng minh \(xy\parallel mn.\) b) Tính số đo góc \(\widehat {DCy}\). c) Kẻ tia phân giác của \(\widehat {DCy}\) cắt đường thẳng \(mn\) tại \(E\). Tính số đo góc \(\widehat {ADE}\). (ảnh 2)

a) Ta có: \(xy \bot AB\)\(mn \bot AB\) nên \(xy\parallel mn.\)

b) Ta có: \(\widehat {DCB} + \widehat {DCn} = 180^\circ \) (hai góc kề bù).

Suy ra \(\widehat {DCB} = 180^\circ - \widehat {DCn} = 180^\circ - 70^\circ = 110^\circ \).

\(xy\parallel mn\) suy ra \(\widehat {DCB} = \widehat {CDy} = 110^\circ \) (hai góc so le trong).

c) Vì \(DE\) là tia phân giác của \(\widehat {CDy}\) nên \(\widehat {CDE} = \widehat {EDy} = \frac{{\widehat {CDy}}}{2} = \frac{{110^\circ }}{2} = 55^\circ \).

\(xy\parallel mn\) suy ra \(\widehat {ECD} = \widehat {ADC} = 70^\circ \) (hai góc so le trong)

\(\widehat {ADE} = \widehat {ADC} + \widehat {CDE} = 70^\circ + 55^\circ = 125^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP