Câu hỏi:

22/09/2025 37 Lưu

Cho \(\frac{{{x^2} - yz}}{a} = \frac{{{y^2} - zx}}{b} = \frac{{{z^2} - xy}}{c}\). Chứng minh rằng \(\frac{{{a^2} - bc}}{x} = \frac{{{b^2} - ca}}{y} = \frac{{{c^2} - ab}}{z}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Ta có: \(\frac{{{x^2} - yz}}{a} = \frac{{{y^2} - zx}}{b} = \frac{{{z^2} - xy}}{c}\)

Suy ra \(\frac{a}{{{x^2} - yz}} = \frac{b}{{{y^2} - zx}} = \frac{c}{{{z^2} - xy}}\)

Suy ra \({\left( {\frac{a}{{{x^2} - yz}}} \right)^2} = {\left( {\frac{b}{{{y^2} - zx}}} \right)^2} = {\left( {\frac{c}{{{z^2} - xy}}} \right)^2}\)

Lại có \[\frac{{{a^2}}}{{{{\left( {{x^2} - yz} \right)}^2}}} = \frac{{bc}}{{\left( {{y^2} - zx} \right)\left( {{z^2} - xy} \right)}} = \frac{{{a^2} - bc}}{{\left( {{x^4} - 2{x^2}yz + {y^2}{z^2}} \right) - \left( {{y^2}{z^2} - x{y^3} - x{z^3} + {x^2}yz} \right)}}\]

\[ = \frac{{{a^2} - bc}}{{{x^4} - 3{x^2}yz + x{y^3} + x{z^3}}} = \frac{{{a^2} - bc}}{{x\left( {{x^3} + {y^3} + {z^3} - 3xyz} \right)}}\]

Tương tự \[\frac{{{b^2}}}{{{{\left( {{y^2} - zx} \right)}^2}}} = \frac{{{b^2} - ac}}{{y\left( {{x^3} + {y^3} + {z^3} - 3xyz} \right)}}\];

\[\frac{{{c^2}}}{{{{\left( {{z^2} - xy} \right)}^2}}} = \frac{{{c^2} - ab}}{{z\left( {{x^3} + {y^3} + {z^3} - 3xyz} \right)}}\]

Suy ra \[\frac{{{a^2} - bc}}{{x\left( {{x^3} + {y^3} + {z^3} - 3xyz} \right)}} = \frac{{{b^2} - ac}}{{y\left( {{x^3} + {y^3} + {z^3} - 3xyz} \right)}} = \frac{{{c^2} - ab}}{{z\left( {{x^3} + {y^3} + {z^3} - 3xyz} \right)}}\]

Do đó \[\frac{{{a^2} - bc}}{x} = \frac{{{b^2} - ac}}{y} = \frac{{{c^2} - ab}}{z}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Kẻ đường thẳng qua \(C\) và song song với \[AB\].

\(AB\,{\rm{//}}\,DE\) nên đường thẳng đó cũng song song với \[DE\].

Do đó \({\widehat C_1} + \widehat {ABC} = 180^\circ \)\(\widehat {{C_2}} + \widehat {CDE} = 180^\circ \) (hai góc trong cùng phía)

Do đó, \[{\widehat C_1} = 60^\circ \]\[\,{\widehat C_2} = 45^\circ \].

Suy ra \[\widehat {BCD} = 180^\circ - 60^\circ - 45^\circ = 75^\circ \].

Lời giải

Cho hình vẽ dưới đây biết \(\widehat {DCn} = 70^\circ \).   a) Chứng minh \(xy\parallel mn.\) b) Tính số đo góc \(\widehat {DCy}\). c) Kẻ tia phân giác của \(\widehat {DCy}\) cắt đường thẳng \(mn\) tại \(E\). Tính số đo góc \(\widehat {ADE}\). (ảnh 2)

a) Ta có: \(xy \bot AB\)\(mn \bot AB\) nên \(xy\parallel mn.\)

b) Ta có: \(\widehat {DCB} + \widehat {DCn} = 180^\circ \) (hai góc kề bù).

Suy ra \(\widehat {DCB} = 180^\circ - \widehat {DCn} = 180^\circ - 70^\circ = 110^\circ \).

\(xy\parallel mn\) suy ra \(\widehat {DCB} = \widehat {CDy} = 110^\circ \) (hai góc so le trong).

c) Vì \(DE\) là tia phân giác của \(\widehat {CDy}\) nên \(\widehat {CDE} = \widehat {EDy} = \frac{{\widehat {CDy}}}{2} = \frac{{110^\circ }}{2} = 55^\circ \).

\(xy\parallel mn\) suy ra \(\widehat {ECD} = \widehat {ADC} = 70^\circ \) (hai góc so le trong)

\(\widehat {ADE} = \widehat {ADC} + \widehat {CDE} = 70^\circ + 55^\circ = 125^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP