Gạo được chứa trong ba kho theo tỉ lệ \(1,3;{\rm{ 2}}\frac{1}{2};{\rm{ 1}}\frac{1}{5}\). Gạo trong kho thứ hai nhiều hơn trong kho thứ nhất là \(43,2\) tấn. Sau 1 tháng, người ta tiêu thụ ở kho thứ nhất \(40\% \) và ở kho thứ hai \(30\% \) và ở kho thứ ba là 25% số gạo có trong mỗi kho. Hỏi trong một tháng đã tiêu thụ được bao nhiêu tấn gạo?
Gạo được chứa trong ba kho theo tỉ lệ \(1,3;{\rm{ 2}}\frac{1}{2};{\rm{ 1}}\frac{1}{5}\). Gạo trong kho thứ hai nhiều hơn trong kho thứ nhất là \(43,2\) tấn. Sau 1 tháng, người ta tiêu thụ ở kho thứ nhất \(40\% \) và ở kho thứ hai \(30\% \) và ở kho thứ ba là 25% số gạo có trong mỗi kho. Hỏi trong một tháng đã tiêu thụ được bao nhiêu tấn gạo?
Quảng cáo
Trả lời:

Hướng dẫn giải
Gọi số gạo có trong mỗi kho lần lượt là \(x,y,z{\rm{ }}\left( {x,y,z > 0} \right)\).
Vì gạo được chứa trong ba kho tỉ lệ với \(1,3;{\rm{ 2}}\frac{1}{2};{\rm{ 1}}\frac{1}{5}\) nên ta có \(\frac{x}{{1,3}} = \frac{y}{{2\frac{1}{2}}} = \frac{z}{{1\frac{1}{5}}}\) (1)
Gạo trong kho thứ hai nhiều hơn gạo trong kho thứ nhất \(43,2\) tấn nên có \(y - x = 43,2\) (2)
Từ (1) và (2) áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{{1,3}} = \frac{y}{{2\frac{1}{2}}} = \frac{z}{{1\frac{1}{5}}} = \frac{{y - x}}{{2\frac{1}{2} - 1,3}} = \frac{{43,2}}{{1,2}} = 36\)
Do đó, \(x = 1,3 \cdot 36 = 46,8\); \(y = 2\frac{1}{2} \cdot 36 = 90\); \(z = 1\frac{1}{5} \cdot 36 = 43,2\).
Vậy ban đầu trong kho thứ nhất có \(46,8\) tấn gạo, kho thứ hai có 90 tấn gạo, kho thứ ba có \(43,2\) tấn gạo.
Sau một tháng, kho thứ nhất đã tiêu thụ số tấn gạo là: \(46,8 \cdot 40\% = 18,72\) (tấn)
Sau một tháng, kho thứ hai đã tiêu thụ số tấn gạo là: \(90 \cdot 30\% = 27\) (tấn)
Sau một tháng, kho thứ ba đã tiêu thụ số tấn gạo là: \(43,2 \cdot 25\% = 10,8\) (tấn).
Vậy sau một tháng, khối lượng gạo đã tiêu thụ là: \(18,72 + 27 + 10,8 = 56,52\) (tấn gạo)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Kẻ đường thẳng qua \(C\) và song song với \[AB\].
Mà \(AB\,{\rm{//}}\,DE\) nên đường thẳng đó cũng song song với \[DE\].
Do đó \({\widehat C_1} + \widehat {ABC} = 180^\circ \) và \(\widehat {{C_2}} + \widehat {CDE} = 180^\circ \) (hai góc trong cùng phía)
Do đó, \[{\widehat C_1} = 60^\circ \] và \[\,{\widehat C_2} = 45^\circ \].
Suy ra \[\widehat {BCD} = 180^\circ - 60^\circ - 45^\circ = 75^\circ \].
Lời giải
a) Ta có: \(xy \bot AB\) và \(mn \bot AB\) nên \(xy\parallel mn.\)
b) Ta có: \(\widehat {DCB} + \widehat {DCn} = 180^\circ \) (hai góc kề bù).
Suy ra \(\widehat {DCB} = 180^\circ - \widehat {DCn} = 180^\circ - 70^\circ = 110^\circ \).
Vì \(xy\parallel mn\) suy ra \(\widehat {DCB} = \widehat {CDy} = 110^\circ \) (hai góc so le trong).
c) Vì \(DE\) là tia phân giác của \(\widehat {CDy}\) nên \(\widehat {CDE} = \widehat {EDy} = \frac{{\widehat {CDy}}}{2} = \frac{{110^\circ }}{2} = 55^\circ \).
Vì \(xy\parallel mn\) suy ra \(\widehat {ECD} = \widehat {ADC} = 70^\circ \) (hai góc so le trong)
Mà \(\widehat {ADE} = \widehat {ADC} + \widehat {CDE} = 70^\circ + 55^\circ = 125^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.