Câu hỏi:

22/09/2025 13 Lưu

Trên một công trường xây dựng, do cải tiến kỹ thuật nên năng suất lao động của công nhân tăng \(25\% \). Hỏi nếu số công nhân không thay đổi thì thời gian làm xong việc giảm bao nhiêu phần trăm?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Gọi \(x\) là thời gian hoàn thành công việc với năng suất lao động \(100\% \).

      \(y\) là thời gian hoàn thành với năng suất \(125\% \).

Vì công nhân không đổi nên thời gian hoàn thành tỉ lệ nghịch với năng suất lao động nên:

\(x.100 = y.125\) hay \(\frac{y}{x} = \frac{{100}}{{125}} = \frac{4}{5} = 80\% \).

Do đó, nếu số công nhân không thay đổi thì thời gian làm xong việc giảm đi \(100\% - 80\% = 20\% \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(A = \frac{5}{{2x - 3}}\)

Điều kiện \(2x - 3 \ne 0\) hay \(x \ne \frac{3}{2}\).

Để \(A\) có giá trị nguyên thì \(5 \vdots \left( {2x - 3} \right)\) hay \(\left( {2x - 3} \right)\) là ước của \(5\).

Mà các ước của \(5\) là: \( - 5; - 1;1;5.\)

Ta có bảng sau:

\(2x - 3\)

\( - 5\)

\( - 1\)

\(1\)

\(5\)

\(x\)

\( - 1\)

\(1\)

\(2\)

\(4\)

\(x \in \mathbb{Z}\) nên \(x \in \left\{ { - 1;1;2;4} \right\}\).

Lời giải

c) \[\frac{{x - 214}}{{86}} + \frac{{x - 132}}{{84}} + \frac{{x - 54}}{{82}} = 6\]

\[x\left( {\frac{1}{{86}} + \frac{1}{{84}} + \frac{1}{{82}}} \right) = 6 + \frac{{214}}{{86}} + \frac{{132}}{{84}} + \frac{{54}}{{82}}\]

\[x\left( {\frac{1}{{86}} + \frac{1}{{84}} + \frac{1}{{82}}} \right) = \left( {1 + \frac{{214}}{{86}}} \right) + \left( {2 + \frac{{132}}{{84}}} \right) + \left( {3 + \frac{{54}}{{82}}} \right)\]

\[x\left( {\frac{1}{{86}} + \frac{1}{{84}} + \frac{1}{{82}}} \right) = \frac{{300}}{{86}} + \frac{{300}}{{84}} + \frac{{300}}{{82}}\]

\[x\left( {\frac{1}{{86}} + \frac{1}{{84}} + \frac{1}{{82}}} \right) = 300\left( {\frac{1}{{86}} + \frac{1}{{84}} + \frac{1}{{82}}} \right)\]

\[x = 300\]

Vậy \[x = 300\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP