Câu hỏi:

22/09/2025 35 Lưu

Phần II. Trắc nghiệm đúng, sai

(Gồm 5 câu hỏi, hãy chọn đúng hoặc sai cho mỗi ý a), b), c), d))

 

Cho hình chữ nhật \(ABCD\) có hai đường chéo cắt nhau tại \(O.\) Kẻ \(OH \bot CD\) tại \(H.\) Biết rằng \(\widehat {DAO} = 2\widehat {OAB}.\)

          a) \(AC = BD.\)

          b) \(\widehat {OAB} = 40^\circ .\)

          c) \(HC = \frac{1}{3}DC.\)

          d) Tam giác \(AOD\) là tam giác đều.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chữ nhật ABCD có hai đường chéo cắt nhau tại O. Kẻ OH vuông góc CD tại  H. Biết rằng góc DAO = 2 góc OAB (ảnh 1)

a) Đúng.

Vì tứ giác \(ABCD\) là hình chữ nhật nên \(AC = BD.\)

b) Sai.

Vì tứ giác \(ABCD\) là hình chữ nhật nên \(\widehat {DAB} = 90^\circ \) hay \(\widehat {DAO} + \widehat {OAB} = 90^\circ .\)

Theo đề bài: \(\widehat {DAO} = 2\widehat {OAB}\) nên \(\widehat {OAB} + 2\widehat {OAB} = 90^\circ .\) Suy ra \(3\widehat {OAB} = 90^\circ ,\) nên \(\widehat {OAB} = 30^\circ .\)

c) Sai.

Vì tứ giác \(ABCD\) là hình chữ nhật nên \(OC = OD.\) Do đó, tam giác \(COD\) cân tại \(O.\)

Do đó, \(OH\) là đường cao đồng thời là đường trung tuyến của \(\Delta COD.\) Suy ra \(HC = \frac{1}{2}DC.\)

d) Đúng.

\(\widehat {OAB} = 30^\circ \) nên \(\widehat {DAO} = 2\widehat {OAB} = 2 \cdot 30^\circ = 60^\circ .\)

Vì tứ giác \(ABCD\) là hình chữ nhật nên \(OA = OD.\) Do đó, tam giác \(AOD\) cân tại \(O.\)

\(\widehat {OAD} = 60^\circ \) nên tam giác \(AOD\) là tam giác đều.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(10\)

Tứ giác \(ABED\) có: \(\widehat A = \widehat B = \widehat {BED} = \widehat {EDA} = 90^\circ \) nên tứ giác \(ABED\) là hình chữ nhật.

Do đó, \(EB = AD = 4\;{\rm{m,}}\;AB = DE.\)

Ta có: \(EC = CB - BE = 10 - 4 = 6\;\left( {\rm{m}} \right).\)

Diện tích tam giác \(DEC\) vuông tại \(E\) bằng \(30\;{{\rm{m}}^2}\) nên

\(\frac{1}{2}EC \cdot DE = 30\) hay \(\frac{1}{2} \cdot 6 \cdot DE = 30\), do đó \(DE = 10\;{\rm{m}}.\)

Do đó, \(AB = DE = 10\;{\rm{m}}.\) Vậy \(AB = 10\;{\rm{m}}.\)

Lời giải

Đáp án: \(5\)

Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Biết rằng chu vi tam giác ABC bằng 24 cm (ảnh 1)

Vì chu vi tam giác \(ABC\) bằng \(24\;{\rm{cm}}\)nên \(AB + BC + AC = 24\;\left( {{\rm{cm}}} \right).\)

\(AB:AC:BC = 3:4:5\) nên \(\frac{{AB}}{3} = \frac{{AC}}{4} = \frac{{BC}}{5}.\)

Theo tính chất của dãy tỉ số bằng nhau ta có: \(\frac{{AB}}{3} = \frac{{AC}}{4} = \frac{{BC}}{5} = \frac{{AB + AC + BC}}{{3 + 4 + 5}} = \frac{{24}}{{12}} = 2.\)

Do đó, \(BC = 2 \cdot 5 = 10\;\left( {{\rm{cm}}} \right).\)

Vì tam giác \(ABC\) vuông tại \(A.\)

\(AM\) là đường trung tuyến ứng với cạnh huyền \(BC\) nên \(AM = \frac{1}{2}BC = \frac{1}{2} \cdot 10 = 5\;\left( {{\rm{cm}}} \right).\)

Vậy \(AM = 5\;{\rm{cm}}{\rm{.}}\)

Câu 3

A. \(AC = \frac{1}{2}BD.\)   

B. \(AC = \frac{3}{4}BD.\)          
C. \(AC = \frac{4}{3}BD.\)                               
D. \(AC = BD.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Hình chữ nhật.       
B. Hình vuông.           
C. Hình bình hành.     
D. Hình thoi.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\widehat {OAB} = \widehat {OBA}.\)  
B. \(\widehat {OAB} = 2\widehat {OBA}.\)   
C. \(\widehat {OAB} = \frac{1}{2}\widehat {OBA}.\)         
D. \(\widehat {OAB} = \frac{1}{3}\widehat {OBA}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP