Câu hỏi:

22/09/2025 23 Lưu

Cho tam giác \(AOB\) vuông tại \(O\)\(OC\) là tia phân giác của \(\widehat {AOB}.\) Kẻ \(CK \bot OB\) tại \(K\)\(CH \bot OA\) tại \(H.\)

          a) \(\widehat {HCK} = 90^\circ .\)

          b) Tứ giác \(HCKO\) là hình vuông.

          c) \(\widehat {OCK} = 40^\circ .\)

          d) \(\widehat A = \widehat {KCB}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho tam giác AOB vuông tại O có OC là tia phân giác của góc AOB. Kẻ CK vuông góc OB tại K và CH vuông góc OA tại H (ảnh 1)

a) Đúng.

\(CK \bot OB\) tại \(K\) nên \(\widehat {CKO} = 90^\circ .\)\(CH \bot OA\) tại \(H\) nên \(\widehat {CHO} = \widehat {CHA} = 90^\circ .\)

Vì tam giác \(AOB\) vuông tại \(O\) nên \(\widehat {AOB} = 90^\circ \) hay \(\widehat {HOK} = 90^\circ .\)

Tứ giác \(HCKO\) có: \(\widehat {CKO} = \widehat {HOK} = \widehat {CHO} = 90^\circ \) nên tứ giác \(HCKO\) là hình chữ nhật.

Do đó, \(\widehat {HCK} = 90^\circ .\)

b) Đúng.

Hình chữ nhật \(HCKO\) có: \(OC\) là tia phân giác của \(\widehat {HOK}\) nên tứ giác \(HCKO\) là hình vuông.

c) Sai.

tứ giác \(HCKO\) là hình vuông nên \(CO\) là tia phân giác của \(\widehat {HCK}.\)

Suy ra: \(\widehat {OCK} = \frac{1}{2}\widehat {HCK} = \frac{1}{2} \cdot 90^\circ = 45^\circ .\) Vậy \(\widehat {OCK} = 45^\circ .\)

d) Đúng.

Vì tam giác \(AHC\) vuông tại \(H\) nên \(\widehat A + \widehat {HCA} = 90^\circ .\)

Ta có: \(\widehat {HCA} + \widehat {HCK} + \widehat {KCB} = 180^\circ \) nên \(\widehat {KCB} + \widehat {HCA} = 180^\circ - \widehat {HCK} = 180^\circ - 90^\circ = 90^\circ .\)

Do đó, \(\widehat A = \widehat {KCB}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chữ nhật ABCD có hai đường chéo cắt nhau tại O. Kẻ OH vuông góc CD tại  H. Biết rằng góc DAO = 2 góc OAB (ảnh 1)

a) Đúng.

Vì tứ giác \(ABCD\) là hình chữ nhật nên \(AC = BD.\)

b) Sai.

Vì tứ giác \(ABCD\) là hình chữ nhật nên \(\widehat {DAB} = 90^\circ \) hay \(\widehat {DAO} + \widehat {OAB} = 90^\circ .\)

Theo đề bài: \(\widehat {DAO} = 2\widehat {OAB}\) nên \(\widehat {OAB} + 2\widehat {OAB} = 90^\circ .\) Suy ra \(3\widehat {OAB} = 90^\circ ,\) nên \(\widehat {OAB} = 30^\circ .\)

c) Sai.

Vì tứ giác \(ABCD\) là hình chữ nhật nên \(OC = OD.\) Do đó, tam giác \(COD\) cân tại \(O.\)

Do đó, \(OH\) là đường cao đồng thời là đường trung tuyến của \(\Delta COD.\) Suy ra \(HC = \frac{1}{2}DC.\)

d) Đúng.

\(\widehat {OAB} = 30^\circ \) nên \(\widehat {DAO} = 2\widehat {OAB} = 2 \cdot 30^\circ = 60^\circ .\)

Vì tứ giác \(ABCD\) là hình chữ nhật nên \(OA = OD.\) Do đó, tam giác \(AOD\) cân tại \(O.\)

\(\widehat {OAD} = 60^\circ \) nên tam giác \(AOD\) là tam giác đều.

Lời giải

Đáp án: \(10\)

Tứ giác \(ABED\) có: \(\widehat A = \widehat B = \widehat {BED} = \widehat {EDA} = 90^\circ \) nên tứ giác \(ABED\) là hình chữ nhật.

Do đó, \(EB = AD = 4\;{\rm{m,}}\;AB = DE.\)

Ta có: \(EC = CB - BE = 10 - 4 = 6\;\left( {\rm{m}} \right).\)

Diện tích tam giác \(DEC\) vuông tại \(E\) bằng \(30\;{{\rm{m}}^2}\) nên

\(\frac{1}{2}EC \cdot DE = 30\) hay \(\frac{1}{2} \cdot 6 \cdot DE = 30\), do đó \(DE = 10\;{\rm{m}}.\)

Do đó, \(AB = DE = 10\;{\rm{m}}.\) Vậy \(AB = 10\;{\rm{m}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(AC = \frac{1}{2}BD.\)   

B. \(AC = \frac{3}{4}BD.\)          
C. \(AC = \frac{4}{3}BD.\)                               
D. \(AC = BD.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Hình chữ nhật.       
B. Hình vuông.           
C. Hình bình hành.     
D. Hình thoi.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\widehat {OAB} = \widehat {OBA}.\)  
B. \(\widehat {OAB} = 2\widehat {OBA}.\)   
C. \(\widehat {OAB} = \frac{1}{2}\widehat {OBA}.\)         
D. \(\widehat {OAB} = \frac{1}{3}\widehat {OBA}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP