Câu hỏi:

23/09/2025 12 Lưu

Bác Hoa gửi ngân hàng A số tiền 70 triệu đồng với kỳ hạn 1 năm lãi suất \(5,6\% \)/năm. Bác Hoa gửi ngân hàng B số tiền 50 triệu đồng với kỳ hạn 1 năm lãi suất \(6,5\% \)/năm.

a) Sau một năm, số tiền cả gốc lần lãi mà bác Hoa thu được là bao nhiêu?

b) Giả sử sau khi hết năm đầu, lãi suất của ngân hàng A giảm còn \(5,5\% \)/năm, ngân hàng B tăng lãi suất lên \(6,8\% \)/năm. Vì vậy bác Hoa rút 60% số tiền ở ngân hàng A và gửi tiếp vào ngân hàng B. Hỏi hết năm thứ hai thì số tiền cả gốc và lãi mà bác Hoa thu được là bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Số tiền cả gốc và lãi mà bác Hoa thu được ở ngân hàng A sau một năm là:

\(70 \cdot 5,6\% + 70 = 73,92\) (triệu đồng)

Số tiền cả gốc và lãi bác Hoa thu được ở ngân hàng B sau một năm là:

\(50 \cdot 6,5\% + 50 = 53,25\) (triệu đồng)

Số tiền cả gốc và lãi mà bác Hoa thu được ở hai ngân hàng sau một năm là:

\(73,92 + 53,25 = 127,17\) (triệu đồng)

b) Số tiền cả gốc và lãi mà bác Hoa thu được ở một ngân hàng A ở năm thứ hai là:

\(\left( {73,92 - 73,92 \cdot 60\% } \right) \cdot 5,5\% - \left( {73,92 - 73,92 \cdot 60\% } \right) \approx 31,14\) (triệu đồng)

Số tiền cả gốc và lãi mà bác Hoa thu được ở ngân hàng B sau một năm là:

\(97,602 + 97,602 \cdot 6,8\% \approx 104,24\) (triệu đồng)

Số tiền cả gốc và lãi mà bác Hoa thu được ở hai ngân hàng sau hai năm là:

\(127,17 + 104,24 + 31,14 = 262,55\) (triệu đồng).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Kẻ đường thẳng qua \(C\) và song song với \[AB\].

\(AB\,{\rm{//}}\,DE\) nên đường thẳng đó cũng song song với \[DE\].

Do đó \({\widehat C_1} + \widehat {ABC} = 180^\circ \)\(\widehat {{C_2}} + \widehat {CDE} = 180^\circ \) (hai góc trong cùng phía)

Do đó, \[{\widehat C_1} = 60^\circ \]\[\,{\widehat C_2} = 45^\circ \].

Suy ra \[\widehat {BCD} = 180^\circ - 60^\circ - 45^\circ = 75^\circ \].

Lời giải

Chứng minh \(DE \bot BC\). (ảnh 1)

a) \(CD\) là phân giác \(\widehat {BCA}\) suy ra \(\widehat {BCD} = \widehat {ACD}\).

Xét \(\Delta ACD\) \(\Delta ECD\) có:

\(AC = AF\,;\,\,\widehat {BCD} = \widehat {ACD}\,;\,\,CD\) chung.

Do đó \(\Delta ACD = \Delta ECD\) (c.g.c).

Suy ra \(\widehat {CED} = \widehat {CAD} = 90^\circ \) (hai góc tương ứng)

Suy ra \(DE \bot BC\).

b) Vì \(AM\parallel CD\) suy ra \(\widehat {MAC} = \widehat {DCA}\) (hai góc so le trong)

\(CM \bot CA\) nên \(\widehat {MCA} = 90^\circ \).

Xét \(\Delta CAD\)\(\Delta ACM\) có:

\(\widehat {DAC} = \widehat {MCA} = 90^\circ \,;\,\,CA\) chung; \(\widehat {DCA} = \widehat {MAC}\).

Do đó \(\Delta CAD = \Delta ACM\) (g.c.g).

Suy ra (hai cạnh tương ứng).

c) Xét tam giác \(NBC\) và tam giác \(NKC\) có:

\(\widehat {BNC} = \widehat {KNC} = 90^\circ \,;\,\,NC\) chung; \(\widehat {BCN} = \widehat {CKN}\)

Suy ra \(\Delta NBC = \Delta NKC\,\)(g.c.g)

Do đó \(\widehat {NBC} = \widehat {NKC}\,;\,\,NB = NK\).

Xét tam giác \(NBD\) và tam giác \(NKD\) có:

\(NB = ND\,;\,\,\widehat {BND} = \widehat {KND}\,;\,\,ND\) chung.

Suy ra \(\Delta NBD = \Delta NKD\) (c.g.c).

Do đó, \(\widehat {NBD} = \widehat {NKD}\) (hai góc tương ứng)

d) Xét tam giác \(BKE\) và tam giác \(BKC\) có:

\[\widehat {BKE} = \widehat {BKA}\,;\,\,BK\] chung; \[\widehat {BKE} = \widehat {KBA}\].

Do đó \(\Delta BKE = \Delta BKC\) (g.c.g)

Suy ra \(\widehat {BEK} = \widehat {KAB} = 90^\circ \) (hai góc tương ứng)

Suy ra \(KE \bot BC\).

\(DE \bot AC\).

Suy ra ba điểm \(K,\,D,\,E\) thẳng hàng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP