Câu hỏi:

23/09/2025 16 Lưu

Cho hình vẽ bên, biết \(\widehat C = 40^\circ ,\widehat D = 120^\circ ,\widehat E = 100^\circ \). Chứng tỏ \(Cx\parallel Dy\).

Cho hình vẽ bên, biết \(\widehat C = 40^\circ ,\widehat D = 120^\circ ,\widehat E = 100^\circ \). Chứng tỏ \(Cx\parallel Dy\). (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình vẽ bên, biết \(\widehat C = 40^\circ ,\widehat D = 120^\circ ,\widehat E = 100^\circ \). Chứng tỏ \(Cx\parallel Dy\). (ảnh 2)

Kẻ \(Et\,{\rm{//}}\,Cx\).

Do hai góc\(\widehat {CEt}\)\(\widehat {ECx}\) ở vị trí so le trong nên \(\widehat {CEt} = \widehat {ECx} = 40^\circ \) (tính chất hai đường thẳng song song)

Mà tia \(Et\)nằm giữa hai tia \(EC\)\(ED\) nên \[\widehat {CEt} + \widehat {DEt} = \widehat {CED}\]

Hay \[40^\circ + \widehat {DEt} = 100^\circ \]

Suy ra \[\widehat {DEt} = 100^\circ - 40^\circ = 60^\circ \] (1)

Vẽ tia đối \[Dy'\]của tia \(Dy\)

Do \(\widehat {EDy'}\)\(\widehat {EDy}\)là hai góc kề bù nên \(\widehat {EDy'} + \widehat {EDy} = 180^\circ \) hay \(\widehat {EDy'} + 120^\circ = 180^\circ \)

Suy ra \(\widehat {EDy'} = 180^\circ - 120^\circ = 60^\circ \) (2)

Từ (1) và (2) suy ra \[\widehat {DEt} = \widehat {EDy'}\].

Mà hai góc \[\widehat {DEt}\]\[\widehat {EDy'}\]là hai góc ở vị trí so le trong .

Do đó: \(Cx\,{\rm{//}}\,Dy\) (dấu hiệu nhận biết hai đường thẳng song song).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Kẻ đường thẳng qua \(C\) và song song với \[AB\].

\(AB\,{\rm{//}}\,DE\) nên đường thẳng đó cũng song song với \[DE\].

Do đó \({\widehat C_1} + \widehat {ABC} = 180^\circ \)\(\widehat {{C_2}} + \widehat {CDE} = 180^\circ \) (hai góc trong cùng phía)

Do đó, \[{\widehat C_1} = 60^\circ \]\[\,{\widehat C_2} = 45^\circ \].

Suy ra \[\widehat {BCD} = 180^\circ - 60^\circ - 45^\circ = 75^\circ \].

Lời giải

Chứng minh \(DE \bot BC\). (ảnh 1)

a) \(CD\) là phân giác \(\widehat {BCA}\) suy ra \(\widehat {BCD} = \widehat {ACD}\).

Xét \(\Delta ACD\) \(\Delta ECD\) có:

\(AC = AF\,;\,\,\widehat {BCD} = \widehat {ACD}\,;\,\,CD\) chung.

Do đó \(\Delta ACD = \Delta ECD\) (c.g.c).

Suy ra \(\widehat {CED} = \widehat {CAD} = 90^\circ \) (hai góc tương ứng)

Suy ra \(DE \bot BC\).

b) Vì \(AM\parallel CD\) suy ra \(\widehat {MAC} = \widehat {DCA}\) (hai góc so le trong)

\(CM \bot CA\) nên \(\widehat {MCA} = 90^\circ \).

Xét \(\Delta CAD\)\(\Delta ACM\) có:

\(\widehat {DAC} = \widehat {MCA} = 90^\circ \,;\,\,CA\) chung; \(\widehat {DCA} = \widehat {MAC}\).

Do đó \(\Delta CAD = \Delta ACM\) (g.c.g).

Suy ra (hai cạnh tương ứng).

c) Xét tam giác \(NBC\) và tam giác \(NKC\) có:

\(\widehat {BNC} = \widehat {KNC} = 90^\circ \,;\,\,NC\) chung; \(\widehat {BCN} = \widehat {CKN}\)

Suy ra \(\Delta NBC = \Delta NKC\,\)(g.c.g)

Do đó \(\widehat {NBC} = \widehat {NKC}\,;\,\,NB = NK\).

Xét tam giác \(NBD\) và tam giác \(NKD\) có:

\(NB = ND\,;\,\,\widehat {BND} = \widehat {KND}\,;\,\,ND\) chung.

Suy ra \(\Delta NBD = \Delta NKD\) (c.g.c).

Do đó, \(\widehat {NBD} = \widehat {NKD}\) (hai góc tương ứng)

d) Xét tam giác \(BKE\) và tam giác \(BKC\) có:

\[\widehat {BKE} = \widehat {BKA}\,;\,\,BK\] chung; \[\widehat {BKE} = \widehat {KBA}\].

Do đó \(\Delta BKE = \Delta BKC\) (g.c.g)

Suy ra \(\widehat {BEK} = \widehat {KAB} = 90^\circ \) (hai góc tương ứng)

Suy ra \(KE \bot BC\).

\(DE \bot AC\).

Suy ra ba điểm \(K,\,D,\,E\) thẳng hàng.