Một xưởng sản xuất nước mắm, mỗi lít nước mắm loại I cần 3 kg cá và 2 giờ công lao động, đem lại mức lãi là 50 000 đồng; mỗi lít nước mắm loại II cần 2 kg cá và 3 giờ công lao động, đem lại mức lãi 40 000 đồng. Xưởng có 230 kg cá và cần làm việc trong 220 giờ. Hỏi xưởng đó nên sản xuất mỗi loại nước mắm bao nhiêu lít để có mức lãi cao nhất?
Một xưởng sản xuất nước mắm, mỗi lít nước mắm loại I cần 3 kg cá và 2 giờ công lao động, đem lại mức lãi là 50 000 đồng; mỗi lít nước mắm loại II cần 2 kg cá và 3 giờ công lao động, đem lại mức lãi 40 000 đồng. Xưởng có 230 kg cá và cần làm việc trong 220 giờ. Hỏi xưởng đó nên sản xuất mỗi loại nước mắm bao nhiêu lít để có mức lãi cao nhất?
Quảng cáo
Trả lời:

Gọi \(x,y\) lần lượt là số lít nước mắm loại I, II xưởng đó sản xuất.
Theo đề bài ta có \(x,y\) thỏa mãn hệ bất phương trình sau: \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\3x + 2y \le 230\\2x + 3y \le 220\end{array} \right.\).
Miền nghiệm của hệ bất phương trình là miền không gạch trong hình vẽ

Như vậy chúng ta có bài toán tìm giá trị lớn nhất của hàm \(F = 50000x + 40000y\) với \(x;y\) thỏa mãn hệ bất phương trình trên.
Do đó chúng ta xét giá trị của \(F = 50000x + 40000y\) tại các đỉnh của tứ giác OABC với O(0; 0), A(50; 40), \(B\left( {\frac{{230}}{3};0} \right)\), \(C\left( {0;\frac{{220}}{3}} \right)\).
Ta có \(F\left( {0;0} \right) = 50000.0 + 40000.0 = 0\); \(F\left( {50;40} \right) = 50000.50 + 40000.40 = 4100000\);
\[F\left( {\frac{{230}}{3};0} \right) = 50000.\frac{{230}}{3} + 40000.0 \approx 3833333,333\]; \[F\left( {0;\frac{{220}}{3}} \right) = 50000.0 + 40000.\frac{{220}}{3} \approx 2933333,333\].
Vậy giá trị lớn nhất của F là 4100000.
Do đó để mức lãi cao nhất thì xưởng cần sản xuất 50 lít nước mắm loại I và 40 lít nước mắm loại II.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vẽ các đường thẳng \({d_1}: - x + 2y = 6;{d_2}:x + y = 4\); \(Oy:x = 0\); \(Ox:y = 0\).
Điểm M(1; 1) có tọa độ thỏa mãn tất cả các bất phương trình trong hệ nên ta tô đậm các nửa mặt phẳng bờ \({d_1};{d_2};Ox;Oy\) không chứa điểm M.
Miền không bị tô đậm là hình tứ giác OABC kể cả bốn cạnh OA, AB, BC, CO trong hình vẽ dưới là miền nghiệm của hệ bất phương trình đã cho.
Lời giải
a) Áp dụng định lí côsin, ta có:
\({a^2} = {b^2} + {c^2} - 2bc\cos A\)
\[ \Leftrightarrow {a^2} = {8^2} + {5^2} - 2.8.5\cos 120^\circ = 129 \Rightarrow a = \sqrt {129} \].
Áp dụng định lí sin, ta có:
\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)\( \Rightarrow \frac{{\sqrt {129} }}{{\sin 120^\circ }} = \frac{8}{{\sin B}} = \frac{5}{{\sin C}}\)
b) Diện tích tam giác ABC là: \(S = \frac{1}{2}bc\sin A = \frac{1}{2}.8.5\sin 120^\circ = 10\sqrt 3 \).
c) Theo định lí sin ta có \(R = \frac{a}{{2\sin A}} = \frac{{\sqrt {129} }}{{2\sin 120^\circ }} = \sqrt {43} \).
Đường cao AH của tam giác bằng \(\frac{{2S}}{a} = \frac{{2.10\sqrt 3 }}{{\sqrt {129} }} = \frac{{20\sqrt {43} }}{{43}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.