Đề cương ôn tập giữa kì 1 Toán 10 Chân trời sáng tạo cấu trúc mới có đáp án - Bài Tự luận
29 người thi tuần này 4.6 449 lượt thi 20 câu hỏi 45 phút
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
60 câu Trắc nghiệm Toán 10 Bài hệ thức lượng trong tam giác có đáp án (Mới nhất)
28 câu Trắc nghiệm Toán 10 Bài 1(có đáp án): Mệnh đề
100 câu trắc nghiệm Cung và góc lượng giác cơ bản (P1)
30 câu Trắc nghiệm Toán 10 Bài 1. Mệnh đề có đáp án (Mới nhất)
Danh sách câu hỏi:
Lời giải
a) Mệnh đề trên sai vì 02 = 0.
Mệnh đề phủ định là: \(\exists x \in \mathbb{R}:{x^2} \le 0\). Đây là mệnh đề đúng.
b) Mệnh đề trên đúng vì \(\frac{1}{2} > {\left( {\frac{1}{2}} \right)^2}\).
Mệnh đề phủ định là: \(\forall x \in \mathbb{R}:x \le {x^2}\). Mệnh đề phủ định sai.
c) TH1: \(n = 3k\)
Ta có \({n^2} + 1 = {\left( {3k} \right)^2} + 1 = 9{k^2} + 1\) chia 3 dư 1.
TH2: \(n = 3k + 1\)
Ta có \({n^2} + 1 = {\left( {3k + 1} \right)^2} + 1 = 9{k^2} + 6k + 2\) chia 3 dư 2.
TH3: \(n = 3k + 2\)
Ta có \({n^2} + 1 = {\left( {3k + 2} \right)^2} + 1 = 9{k^2} + 12k + 5\) chia cho 3 dư 2.
Vậy \(\forall n \in \mathbb{N},{n^2} + 1\) không chia hết cho 3 là mệnh đề đúng.
Mệnh đề phủ định: \(\exists n \in \mathbb{N},{n^2} + 1\) chia hết cho 3. Mệnh đề này sai.
Lời giải
a) Ta có \[\left( {{x^2} - 1} \right)\left( {2{x^2} - 3x - 2} \right) = 0\]\[ \Leftrightarrow \left[ \begin{array}{l}{x^2} - 1 = 0\\2{x^2} - 3x - 2 = 0\end{array} \right.\]\[ \Leftrightarrow \left[ \begin{array}{l}x = \pm 1\\x = 2\\x = - \frac{1}{2}\end{array} \right.\].
Vì \(x \in \mathbb{Z}\) nên \(x = \pm 1;x = 2\).
Vậy \(M = \left\{ { - 1;1;2} \right\}\).
b) Có \(A \cap B = \left[ {1;3} \right)\); \(A\backslash B = \left( { - 2;1} \right)\).
Lời giải
a) Ta có \(A = \left[ { - 3;5} \right)\) và \(B = \left[ {1; + \infty } \right)\)

Ta có \(A \cap B = \left[ {1;5} \right);A \cup B = \left[ { - 3; + \infty } \right);A\backslash B = \left[ { - 3;1} \right)\).
b) Ta có \(A = \left\{ {x \in \mathbb{R}|x \le 3} \right\}\) và \(B = \left\{ {x \in \mathbb{R}| - 2 < x < 2} \right\}\).
Ta có: \(A = \left( { - \infty ;3} \right]\) và \(B = \left( { - 2;2} \right)\).

Do đó \(A \cap B = \left( { - 2;2} \right);A \cup B = \left( { - \infty ;3} \right];A\backslash B = \left( { - \infty ; - 2} \right] \cup \left[ {2;3} \right]\).
Lời giải
Để \(A \cap B = \emptyset \) thì \(\left[ \begin{array}{l}m - 2 \le 3\\m - 10 \ge 4\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}m \le 5\\m \ge 14\end{array} \right.\).
Lời giải
a) Để \(A \cap B = \emptyset \) thì \(m \le 3m - 1 \Leftrightarrow m \ge \frac{1}{2}\).
b) Để \(B \subset A\) thì \(3m + 3 < m \Leftrightarrow 2m < - 3 \Leftrightarrow m < - \frac{3}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.