Đề cương ôn tập giữa kì 1 Toán 10 Chân trời sáng tạo cấu trúc mới có đáp án - Bài 4. Tích vô hướng của hai vectơ
29 người thi tuần này 4.6 619 lượt thi 11 câu hỏi 45 phút
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Số trung bình cộng, số trung vị. Mốt. Phương sai và độ lệch chuẩn
12 câu Trắc nghiệm đề kiểm tra 3 phương trình hệ phương trình
9 câu Trắc nghiệm Bất phương trình bậc nhất hai ẩn 10 có đáp án
20 câu Trắc nghiệm Đề kiểm tra chương 3: Phương pháp tọa độ trong mặt phẳng có đáp án
Danh sách câu hỏi:
Câu 1
Lời giải
Ta có \(\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \widehat {BAC} = 60^\circ \). Chọn A.
Câu 2
Lời giải

Vì \(ABCD\) là hình bình hành nên \(\overrightarrow {AD} = \overrightarrow {BC} \).
Do đó \(\left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right) = \widehat {BAD}\). Chọn C.
Câu 3
Lời giải
\(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|}} = \frac{{10}}{{4.5}} = \frac{1}{2}\). Chọn D.
Câu 4
Lời giải
Ta có \(\overrightarrow {BA} .\overrightarrow {BC} = BA.BC.\cos \widehat {ABC} = 5.8.\cos 30^\circ = 20\sqrt 3 \). Chọn B.
Câu 5
Lời giải

Ta có \(\widehat C = 90^\circ - \widehat B = 90^\circ - 60^\circ = 30^\circ \).
Có \(AC = AB.\tan 60^\circ = a\sqrt 3 \); \(BC = \frac{{AB}}{{\cos 60^\circ }} = 2a\).
\(\overrightarrow {AC} .\overrightarrow {CB} = - \overrightarrow {CA} .\overrightarrow {CB} = - \left| {\overrightarrow {CA} } \right|.\left| {\overrightarrow {CB} } \right|.\cos C = - a\sqrt 3 .2a.\cos 30^\circ = - 3{a^2}\). Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
Cho tam giác ABC đều cạnh a. Trên các cạnh BC, CA, AB lấy lần lượt các điểm M, N, P sao cho \(\overrightarrow {MC} = - 2\overrightarrow {MB} ,\overrightarrow {NA} = - \frac{1}{2}\overrightarrow {NC} \) và \(\overrightarrow {AP} = \frac{4}{{15}}\overrightarrow {AB} \).
a) Diện tích tam giác ABC là \(\frac{{{a^2}\sqrt 3 }}{2}\).
b) Độ dài của vectơ \(\overrightarrow {AB} + \overrightarrow {BC} = a\).
c) \(\overrightarrow {AB} .\overrightarrow {AC} = \frac{{{a^2}}}{2}\).
d) \(\overrightarrow {AM} .\overrightarrow {PN} = 2{a^2}\).
Cho tam giác ABC đều cạnh a. Trên các cạnh BC, CA, AB lấy lần lượt các điểm M, N, P sao cho \(\overrightarrow {MC} = - 2\overrightarrow {MB} ,\overrightarrow {NA} = - \frac{1}{2}\overrightarrow {NC} \) và \(\overrightarrow {AP} = \frac{4}{{15}}\overrightarrow {AB} \).
a) Diện tích tam giác ABC là \(\frac{{{a^2}\sqrt 3 }}{2}\).
b) Độ dài của vectơ \(\overrightarrow {AB} + \overrightarrow {BC} = a\).
c) \(\overrightarrow {AB} .\overrightarrow {AC} = \frac{{{a^2}}}{2}\).
d) \(\overrightarrow {AM} .\overrightarrow {PN} = 2{a^2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
