Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Chương trình khác
Môn học
46 lượt thi 10 câu hỏi 45 phút
Câu 1:
Cho mệnh đề: “∀x ∈ ℝ, x < 3 ⇒ x2 < 9”.
Mệnh đề trên được phát biểu như thế nào?
A. Tồn tại số thực x mà nếu số đó bé hơn 3 thì bình phương của nó bé hơn 9;
B. Với mọi số thực x mà nếu số đó bé hơn 3 thì bình phương của nó bé hơn 9;
C. Không có số thực x nào mà nếu số đó bé hơn 3 thì bình phương của nó bé hơn 9;
D. Có duy nhất một số thực x mà nếu số đó bé hơn 3 thì bình phương của nó bé hơn 9.
Câu 2:
Cho mệnh đề sau: “… x ∈ ℝ, 4x2 – 1 = 0”.
Chỗ trống trong mệnh đề trên có thể điền kí hiệu nào dưới đây để mệnh đề đúng?
A. ∀;
B. ∃;
C. Cả hai kí hiệu ∀ và ∃ đều được;
D. Không có kí hiệu nào thỏa mãn.
Câu 3:
Mệnh đề “Mọi số chẵn đều chia hết cho 2” có mệnh đề phủ định là:
A. Mọi số chẵn đều không chia hết cho 2;
B. Có ít nhất một số chẵn chia hết cho 2;
C. Mọi số chẵn đều không chia hết cho 2;
D. Có ít nhất một số chẵn không chia hết cho 2.
Câu 4:
Mệnh đề nào sau đây đúng?
A. ∃x ∈ ℤ, x2 – 4 = 0;
B. ∀x ∈ ℤ, x2 + 1 chia hết cho 3;
C. ∀x ∈ ℤ, x2 > x;
D. ∃x ∈ ℤ, x2 + 1 = 0.
Câu 5:
Cho hai mệnh đề sau:
A: “∀x ∈ ℝ: x2 – 4 ≠ 0” ;
B: “∃x ∈ ℝ: x2 = x”.
Xét tính đúng sai của hai mệnh đề trên.
A. A đúng, B sai;
B. A sai, B đúng;
C. A đúng, B đúng;
D. A sai, B sai.
Câu 6:
Kí hiệu X là tập hợp tất cả các bạn học sinh x trong lớp 10A1, P(x) là mệnh đề chứa biến “x đạt học sinh giỏi”. Mệnh đề “∃x ∈ X, P(x)” khẳng định rằng:
A. Tất cả các bạn học sinh trong lớp 10A1 đều đạt học sinh giỏi;
B. Bất cứ ai đạt học sinh giỏi đều học lớp 10A1;
C. Có một số bạn học lớp 10A1 đạt học sinh giỏi;
D. Tất cả các bạn học sinh trong lớp 10A1 đều không đạt học sinh giỏi.
Câu 7:
Mệnh đề “∀x ∈ ℤ, x2 + 1 > 0” được phát biểu là:
A. Với mọi số nguyên x, ta có x2 + 1 luôn lớn hơn 0;
B. Tồn tại duy nhất một số nguyên x để x2 + 1 luôn lớn hơn 0;
C. Tồn tại ít nhất một số nguyên x để x2 + 1 luôn lớn hơn 0;
D. Không có số nguyên nào thỏa mãn bất đẳng thức x2 + 1 > 0.
Câu 8:
Mệnh đề nào sau đây sai?
A. ∀x ∈ ℕ, x ≤ 2x;
B. ∀x ∈ ℝ, x ≥ 0;
C. ∃x ∈ ℕ, x2 = x;
D. ∀x ∈ ℝ, x > 0.
Câu 9:
Cho mệnh đề : “∀x ∈ ℝ, x3 – 5x + 6 ≥ 0”.
Mệnh đề phủ định của mệnh đề trên là:
B. ∀x ∈ ℝ, x3 – 5x + 6 < 0;
C. ∀x ∉ ℝ, x3 – 5x + 6 ≥ 0;
D. ∃x ∈ ℝ, x3 – 5x + 6 < 0.
Câu 10:
Cho các mệnh đề sau:
(1) ∀x ∈ ℝ, |x| > 1 ⇒ x > 1.
(2) ∃x ∈ ℤ, 2x2 – 8 = 0.
(3) ∀x ∈ ℕ, 2x + 1 là số nguyên tố.
Trong các mệnh đề trên, có bao nhiêu mệnh đề đúng?
A. 0;
B. 1;
C. 2;
D. 3.
9 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com