8 câu Trắc nghiệm Toán 10 chân trời sáng tạo Bài tập cuối chương 8 (Nhận biết) có đáp án
39 người thi tuần này 4.6 1.3 K lượt thi 8 câu hỏi 30 phút
🔥 Đề thi HOT:
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
10 Bài tập Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Giả sử một công việc có thể được thực hiện theo một trong ba phương án. Phương án A có 3 cách thực hiện, phương án B có 4 cách thực hiện, phương án C có 7 cách thực hiện (các cách thực hiện của cả ba phương án là khác nhau đôi một). Số cách thực hiện công việc đó là:
Giả sử một công việc có thể được thực hiện theo một trong ba phương án. Phương án A có 3 cách thực hiện, phương án B có 4 cách thực hiện, phương án C có 7 cách thực hiện (các cách thực hiện của cả ba phương án là khác nhau đôi một). Số cách thực hiện công việc đó là:
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Công việc có ba phương án thực hiện:
⦁ Phương án A có 3 cách thực hiện;
⦁ Phương án B có 4 cách thực hiện;
⦁ Phương án C có 7 cách thực hiện.
Ta thấy mỗi cách thực hiện của phương án này không trùng với bất kì cách nào của phương án kia. Do đó, theo quy tắc cộng, ta có 3 + 4 + 7 = 14 cách thực hiện công việc đã cho.
Vậy ta chọn phương án A.
Câu 2
Giả sử một công việc được chia thành ba công đoạn. Công đoạn A có 8 cách thực hiện; ứng với mỗi cách đó có 3 cách thực hiện công đoạn B; ứng với mỗi cách thực hiện công đoạn A và mỗi cách thực hiện công đoạn B có 6 cách thực hiện công đoạn C. Khi đó số cách thực hiện công việc đã cho là:
Giả sử một công việc được chia thành ba công đoạn. Công đoạn A có 8 cách thực hiện; ứng với mỗi cách đó có 3 cách thực hiện công đoạn B; ứng với mỗi cách thực hiện công đoạn A và mỗi cách thực hiện công đoạn B có 6 cách thực hiện công đoạn C. Khi đó số cách thực hiện công việc đã cho là:
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Công việc được chia thành ba công đoạn:
⦁ Công đoạn A có 8 cách thực hiện;
⦁ Công đoạn B: ứng với mỗi cách thực hiện công đoạn A, có 3 cách thực hiện;
⦁ Công đoạn C: ứng với mỗi cách thực hiện công đoạn A và mỗi cách thực hiện công đoạn B, có 6 cách thực hiện.
Theo quy tắc nhân, ta có 8 . 3 . 6 = 144 cách thực hiện công việc đã cho.
Vậy ta chọn phương án D.
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
⦁ Mỗi cách sắp xếp n phần tử của tập A theo một thứ tự gọi là một hoán vị các phần tử đó. Do đó phương án B là phát biểu đúng.
⦁ Mỗi cách lấy k phần tử của A và sắp xếp chúng theo một thứ tự gọi là một chỉnh hợp chập k của n phần tử đó. Do đó phương án A là phát biểu đúng.
⦁ Mỗi tập con gồm k phần tử của A được gọi là một tổ hợp chập k của n phần tử. Do đó phương án C là phát biểu đúng.
⦁ Mỗi hoán vị của n phần tử cũng chính là chỉnh hợp chập n của n phần tử đó. Do đó phương án D là phát biểu sai.
Vậy ta chọn phương án D.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
⦁ Ta quy ước: P0 = 0! = 1. Do đó phương án A đúng.
⦁ Ta có , với 0 ≤ k ≤ n.
⦁ Ta có . Do đó phương án B sai.
Do đó phương án C đúng.
⦁ Ta có .
Do đó phương án D đúng.
Vậy ta chọn phương án B.
Câu 5
Cho tập hợp X gồm n phần tử (n ≥ 1) và số nguyên k (1 ≤ k ≤ n). Một chỉnh hợp chập k của n phần tử là:
Cho tập hợp X gồm n phần tử (n ≥ 1) và số nguyên k (1 ≤ k ≤ n). Một chỉnh hợp chập k của n phần tử là:
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Mỗi cách lấy k phần tử của tập X và sắp xếp chúng theo một thứ tự gọi là một chỉnh hợp chập k của n phần tử đó.
Vậy ta chọn phương án B.
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Theo công thức nhị thức Newton, ta có:
.
Vậy ta chọn phương án A.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Ta có tổng số mũ của a, b trong mỗi hạng tử khi khai triển (a + b)n luôn bằng n.
Vậy tổng số mũ của a và b trong mỗi hạng tử khi khai triển biểu thức (a + b)5 bằng 5.
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Ta có trong khai triển (a + b)n có n + 1 hạng tử.
Vậy trong khai triển (a + b)99 có 100 hạng tử.
251 Đánh giá
50%
40%
0%
0%
0%