Trong một trận lụt ở Hội An, một khách sạn bị nước lụt tràn vào, cần di chuyển cùng một lúc 40 hành khách và 24 vali hành lý. Lúc này, ban quản lí khách sạn chỉ huy động được 8 chiếc ghe lớn và 8 chiếc ghe nhỏ. Một chiếc ghe lớn chỉ có thể chở 10 hành khách và 4 vali hành lý. Một chiếc ghe nhỏ chỉ có thể chở 5 hành khách và 4 vali hành lý. Giá một chuyến ghe lớn là 250 nghìn đồng và giá một chiếc ghe nhỏ là 130 nghìn đồng. Hỏi chủ khách sạn cần thuê bao nhiêu chiếc ghe mỗi loại để chi phí thấp nhất? Tính chi phí thấp nhất đó.
Trong một trận lụt ở Hội An, một khách sạn bị nước lụt tràn vào, cần di chuyển cùng một lúc 40 hành khách và 24 vali hành lý. Lúc này, ban quản lí khách sạn chỉ huy động được 8 chiếc ghe lớn và 8 chiếc ghe nhỏ. Một chiếc ghe lớn chỉ có thể chở 10 hành khách và 4 vali hành lý. Một chiếc ghe nhỏ chỉ có thể chở 5 hành khách và 4 vali hành lý. Giá một chuyến ghe lớn là 250 nghìn đồng và giá một chiếc ghe nhỏ là 130 nghìn đồng. Hỏi chủ khách sạn cần thuê bao nhiêu chiếc ghe mỗi loại để chi phí thấp nhất? Tính chi phí thấp nhất đó.
Quảng cáo
Trả lời:

Gọi \(x\) là số ghe lớn được chủ khách sạn thuê và y là số ghe nhỏ được chủ khách sạn thuê.
Theo đề ta có hệ \(\left\{ \begin{array}{l}0 \le x \le 8\\0 \le y \le 8\\10x + 5y \ge 40\\4x + 4y \ge 24\end{array} \right.\)
và chi phí \(F\left( {x;y} \right) = 250x + 130y\) (đơn vị nghìn đồng).
Vẽ được miền nghiệm của hệ bất phương trình là đa giác ABCDE với \(A\left( {6;0} \right),B\left( {2;4} \right),C\left( {0;8} \right),D\left( {8;8} \right),E\left( {8;0} \right)\).

Ta có \(F\left( {6;0} \right) = 1500;F\left( {2;4} \right) = 1020;F\left( {0;8} \right) = 1040;F\left( {8;8} \right) = 3040;F\left( {8;0} \right) = 2000\).
Vậy chi phí thấp nhất là 1 020 000 đồng khi thuê 2 ghe lớn và 4 ghe nhỏ.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vẽ các đường thẳng \({d_1}: - x + 2y = 6;{d_2}:x + y = 4\); \(Oy:x = 0\); \(Ox:y = 0\).
Điểm M(1; 1) có tọa độ thỏa mãn tất cả các bất phương trình trong hệ nên ta tô đậm các nửa mặt phẳng bờ \({d_1};{d_2};Ox;Oy\) không chứa điểm M.
Miền không bị tô đậm là hình tứ giác OABC kể cả bốn cạnh OA, AB, BC, CO trong hình vẽ dưới là miền nghiệm của hệ bất phương trình đã cho.
Lời giải
a) Áp dụng định lí côsin, ta có:
\({a^2} = {b^2} + {c^2} - 2bc\cos A\)
\[ \Leftrightarrow {a^2} = {8^2} + {5^2} - 2.8.5\cos 120^\circ = 129 \Rightarrow a = \sqrt {129} \].
Áp dụng định lí sin, ta có:
\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)\( \Rightarrow \frac{{\sqrt {129} }}{{\sin 120^\circ }} = \frac{8}{{\sin B}} = \frac{5}{{\sin C}}\)
b) Diện tích tam giác ABC là: \(S = \frac{1}{2}bc\sin A = \frac{1}{2}.8.5\sin 120^\circ = 10\sqrt 3 \).
c) Theo định lí sin ta có \(R = \frac{a}{{2\sin A}} = \frac{{\sqrt {129} }}{{2\sin 120^\circ }} = \sqrt {43} \).
Đường cao AH của tam giác bằng \(\frac{{2S}}{a} = \frac{{2.10\sqrt 3 }}{{\sqrt {129} }} = \frac{{20\sqrt {43} }}{{43}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.