Gọi \(M;N\) lần lượt là trung điểm các cạnh AB; AC của tam giác đều ABC. Hỏi cặp vectơ nào sau đây cùng hướng.
Quảng cáo
Trả lời:

\(\overrightarrow {AB} \) và \(\overrightarrow {MB} \) là hai vectơ cùng hướng. Chọn B.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Do MN là đường trung bình của tam giác ABC nên \(MN = \frac{1}{2}BC\).
b) Điểm P đối xứng với điểm M qua N nên MP = 2MN = BC. Do đó \(\left| {\overrightarrow {BC} } \right| = \left| {\overrightarrow {MP} } \right|\).
c) Xét nửa mặt phẳng bờ AB chứa C, ta có N là trung điểm AC nên N và C cùng phía AB hay cùng phía MB. Do đó \(\overrightarrow {MN} \) và \(\overrightarrow {BC} \) cùng hướng.
Lại có P đối xứng M qua N nên MP và MN cùng hướng.
Dễ thấy \(\overrightarrow {MN} \ne \overrightarrow 0 \) nên \(\overrightarrow {MP} \) và \(\overrightarrow {BC} \) cùng hướng.
d) Vì \(\overrightarrow {MP} \) và \(\overrightarrow {BC} \) cùng hướng và \(\left| {\overrightarrow {BC} } \right| = \left| {\overrightarrow {MP} } \right|\) nên \(\overrightarrow {MP} = \overrightarrow {BC} \).
Đáp án: a) Sai; b) Sai; c) Sai; d) Đúng.
Lời giải
Ta có MN // PQ, MN = PQ (do cùng song song và bằng \(\frac{1}{2}AC\)).
Do đó MNPQ là hình bình hành.
Vậy các vectơ cùng hướng với vectơ \(\overrightarrow {MN} \) là \(\overrightarrow {QP} ,\overrightarrow {AC} \).
Trả lời: 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.