Câu hỏi:

03/10/2025 68 Lưu

A. Trắc nghiệm

Dạng 1. Trắc nghiệm nhiều phương án lựa chọn

Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Trong không gian, cho tứ diện \(ABCD\). Ta có \[\overrightarrow {AB} \, + \,\overrightarrow {CD} \] bằng 

A. \[\overrightarrow {AD} \, + \,\overrightarrow {BC} \].                     
B. \[\overrightarrow {DA} \, + \,\overrightarrow {CB} \] .                      
C. \[\overrightarrow {DA} \, + \,\overrightarrow {BC} \].                               
D. \[\overrightarrow {AD} \, + \,\overrightarrow {CB} \].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Theo quy tắc ba điểm, ta có: \[\overrightarrow {AB\,} \, = \overrightarrow {AD} \, + \,\overrightarrow {DB} \].

Do đó:

\[\overrightarrow {AB} \, + \,\overrightarrow {CD} \, = \,\overrightarrow {AD} \, + \,\overrightarrow {DB} \, + \,\overrightarrow {CD} \]

\( = \,\,\,\,\overrightarrow {AD} \, + \left( {\,\overrightarrow {DB} \, + \,\overrightarrow {CD} } \right)\) \( = \,\,\,\,\overrightarrow {AD} \, + \left( {\,\,\overrightarrow {CD} \, + \,\overrightarrow {DB} } \right)\)\( = \,\,\,\,\overrightarrow {AD} \, + \,\overrightarrow {CB} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

\({\left( {3\overrightarrow a  + 5\overrightarrow b } \right)^2} = 9{\overrightarrow a ^2} + 30\overrightarrow a \overrightarrow b  + 25{\overrightarrow b ^2}\) \( = 9 + 90 + 25 = 124\)\( \Rightarrow \left| {3\overrightarrow a  + 5\overrightarrow b } \right| = \sqrt {124} \).

Lời giải

Lấy các điểm \(M,N,P,Q\)lần lượt trên các tia \(EA,EB,EC,ED\) sao cho

\(\overrightarrow {EM}  = \overrightarrow {{F_1}} ,\overrightarrow {EN}  = \overrightarrow {{F_2}} ,\overrightarrow {EP}  = \overrightarrow {{F_3}} ,\overrightarrow {EQ}  = \overrightarrow {{F_4}} {\rm{. }}\)

Do các lực căng \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} ,\overrightarrow {{F_4}} \) đều có cường độ là \(4700\;{\rm{N}}\) nên \(EM = EN = EP = EQ = 4700\).

Một chiếc ô tô được đặt trên mặt đáy dưới của một khung sắt có dạng hình hộp chữ nhật với đáy trên là hình chữ nhật \[ABCD (ảnh 2)

a) Sai. Ta có: \(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  = \overrightarrow {EM}  + \overrightarrow {EN}  = 2\overrightarrow {EH} \), với \(H\) là trung điểm của \(MN\).

\(\overrightarrow {{F_3}}  + \overrightarrow {{F_4}}  = \overrightarrow {EP}  + \overrightarrow {EQ}  = 2\overrightarrow {EK} \), với \(K\) là trung điểm của \[PQ\] suy ra \(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  \ne \overrightarrow {{F_3}}  + \overrightarrow {{F_4}} \).

b) Đúng. Ta có \(\overrightarrow {{F_1}}  + \overrightarrow {{F_3}}  = \overrightarrow {EM}  + \overrightarrow {EP}  = 2\overrightarrow {EO} \), với \(O\) là trung điểm của \(MP\).

\(\overrightarrow {{F_2}}  + \overrightarrow {{F_4}}  = \overrightarrow {EN}  + \overrightarrow {EQ}  = 2\overrightarrow {EO} ,\) với \(O\) là trung điểm của \[MP\] suy ra \(\overrightarrow {{F_1}}  + \overrightarrow {{F_3}}  = \overrightarrow {{F_2}}  + \overrightarrow {{F_4}} \).

c) Đúng. \(\left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_3}} } \right| = |2\overrightarrow {EO} | = 2EO\). Theo giả thiết, góc giữa \(EA\)với \(\left( {ABCD} \right)\) bằng \(60^\circ \) nên góc giữa \(EM\)với \(\left( {MNPQ} \right)\) cũng bằng \(60^\circ \) hay \(\widehat {SMO} = 60^\circ \).

Xét \(\Delta EMO\) có \(EM = 4700,\widehat {\,SMO} = 60^\circ \) suy ra \(EO = EM\sin 60^\circ  = 2350\sqrt 3 \).

d) Đúng. Từ đây ta tính được \(\left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_3}} } \right| = 2EO = 8141\;{\rm{N}}\).