Câu hỏi:

03/10/2025 337 Lưu

B. Tự luận

Cho hình lập phương\(ABCD.A'B'C'D'\) có cạnh bằng \(5\).

a) Tìm góc giữa các cặp vectơ sau: \(\overrightarrow {AC} \) và \(\overrightarrow {AB} \); \(\overrightarrow {AC} \) và \(\overrightarrow {B'D'} \); \(\overrightarrow {AC} \) và \(\overrightarrow {CD} \); \(\overrightarrow {AD'} \) và \(\overrightarrow {BD} \).

b) Tính các tích vô hướng:\(\overrightarrow {AC} .\overrightarrow {AB} \); \(\overrightarrow {AC} .\overrightarrow {B'D'} \); \(\overrightarrow {AD'} .\overrightarrow {BD} \).

c) Chứng minh \(\overrightarrow {AC'} \) vuông góc với \(\overrightarrow {BD} \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình lập phương\(ABCD.A'B'C'D'\) có cạnh bằng \(5\). (ảnh 1)

a) Ta có: \(\left( {\overrightarrow {AC} ,\overrightarrow {AB} } \right) = \widehat {CAB} = 45^\circ \);  \(\left( {\overrightarrow {AC} ,\,\overrightarrow {B'D'} } \right) = \left( {\overrightarrow {AC} ,\,\overrightarrow {BD'} } \right) = 90^\circ \)

\[\left( {\overrightarrow {AC} ,\,\overrightarrow {CD} } \right) = \left( {\overrightarrow {CE} ,\,\overrightarrow {CD} } \right) = 180^\circ  - 45^\circ  = 135^\circ \] (\(E\) là điểm đối xứng của \(A\) qua \(C\))

\(\overrightarrow {AD'}  = \overrightarrow {BC'}  \Rightarrow \left( {\overrightarrow {AD'} ,\overrightarrow {BD} } \right) = \left( {\overrightarrow {BC'} ,\overrightarrow {BD} } \right) = \widehat {C'BD}\) mà tam giác \(C'BD\) là tam giác đều nên khi đó ta có \(\widehat {C'BD} = 60^\circ \).

b) Ta có \(AC = BD = B'D' = 5\sqrt 2 \) suy ra:

·   AC.AB=AC.AB.cos45°=25.

Do \(AC\) vuông góc với \(B'D'\) nên \(\overrightarrow {AC} .\overrightarrow {B'D'}  = 0\).

·   AD'.BD=AD'.BD.cos60°=52.2.12=25.

c) Ta cần chứng minh \(\overrightarrow {AC'} .\overrightarrow {BD}  = 0\)

Ta có: \(\overrightarrow {AC'}  = \overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {AA'} \) và \(\overrightarrow {BD}  = \overrightarrow {AD}  - \overrightarrow {AB} \) nên \(\overrightarrow {AC'} .\overrightarrow {BD}  = \left( {\overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {AA'} } \right).\left( {\overrightarrow {AD}  - \overrightarrow {AB} } \right)\)

\[ = \overrightarrow {AB} .\overrightarrow {AD}  - \overrightarrow {A{B^2}}  + \overrightarrow {A{D^2}}  - \overrightarrow {AD} .\overrightarrow {AB}  + \overrightarrow {AA'} .\overrightarrow {AD}  - \overrightarrow {AA'} .\overrightarrow {AB}  = {5^2} - {5^2} = 0\].

Suy ra \(\overrightarrow {AC'} \) vuông góc với \(\overrightarrow {BD} \) (điều phải chứng minh).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

\({\left( {3\overrightarrow a  + 5\overrightarrow b } \right)^2} = 9{\overrightarrow a ^2} + 30\overrightarrow a \overrightarrow b  + 25{\overrightarrow b ^2}\) \( = 9 + 90 + 25 = 124\)\( \Rightarrow \left| {3\overrightarrow a  + 5\overrightarrow b } \right| = \sqrt {124} \).

Lời giải

Lấy các điểm \(M,N,P,Q\)lần lượt trên các tia \(EA,EB,EC,ED\) sao cho

\(\overrightarrow {EM}  = \overrightarrow {{F_1}} ,\overrightarrow {EN}  = \overrightarrow {{F_2}} ,\overrightarrow {EP}  = \overrightarrow {{F_3}} ,\overrightarrow {EQ}  = \overrightarrow {{F_4}} {\rm{. }}\)

Do các lực căng \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} ,\overrightarrow {{F_4}} \) đều có cường độ là \(4700\;{\rm{N}}\) nên \(EM = EN = EP = EQ = 4700\).

Một chiếc ô tô được đặt trên mặt đáy dưới của một khung sắt có dạng hình hộp chữ nhật với đáy trên là hình chữ nhật \[ABCD (ảnh 2)

a) Sai. Ta có: \(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  = \overrightarrow {EM}  + \overrightarrow {EN}  = 2\overrightarrow {EH} \), với \(H\) là trung điểm của \(MN\).

\(\overrightarrow {{F_3}}  + \overrightarrow {{F_4}}  = \overrightarrow {EP}  + \overrightarrow {EQ}  = 2\overrightarrow {EK} \), với \(K\) là trung điểm của \[PQ\] suy ra \(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  \ne \overrightarrow {{F_3}}  + \overrightarrow {{F_4}} \).

b) Đúng. Ta có \(\overrightarrow {{F_1}}  + \overrightarrow {{F_3}}  = \overrightarrow {EM}  + \overrightarrow {EP}  = 2\overrightarrow {EO} \), với \(O\) là trung điểm của \(MP\).

\(\overrightarrow {{F_2}}  + \overrightarrow {{F_4}}  = \overrightarrow {EN}  + \overrightarrow {EQ}  = 2\overrightarrow {EO} ,\) với \(O\) là trung điểm của \[MP\] suy ra \(\overrightarrow {{F_1}}  + \overrightarrow {{F_3}}  = \overrightarrow {{F_2}}  + \overrightarrow {{F_4}} \).

c) Đúng. \(\left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_3}} } \right| = |2\overrightarrow {EO} | = 2EO\). Theo giả thiết, góc giữa \(EA\)với \(\left( {ABCD} \right)\) bằng \(60^\circ \) nên góc giữa \(EM\)với \(\left( {MNPQ} \right)\) cũng bằng \(60^\circ \) hay \(\widehat {SMO} = 60^\circ \).

Xét \(\Delta EMO\) có \(EM = 4700,\widehat {\,SMO} = 60^\circ \) suy ra \(EO = EM\sin 60^\circ  = 2350\sqrt 3 \).

d) Đúng. Từ đây ta tính được \(\left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_3}} } \right| = 2EO = 8141\;{\rm{N}}\).