Câu hỏi:

27/09/2025 24 Lưu

Bảng sau thống kê lại tổng số giờ nắng trong tháng 6 của các năm từ 2002 đến 2021 tại hai trạm quan trắc đặt ở Nha Trang và Quy Nhơn.

Xét số liệu ở Nha Trang thì khoảng tứ phân vị của mẫu số liệu ghép nhóm là: 32,64. (ảnh 1)

a) Xét số liệu ở Nha Trang thì khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \(32,64\).

b) Nếu so sánh theo khoảng tứ phân vị thì số giờ nắng trong tháng 6 của Quy Nhơn đồng đều hơn.

c) Xét số liệu của Quy Nhơn ta có độ lệch chuẩn của mẫu số liệu ghép nhóm (làm tròn kết quả đến hàng phần trăm) là: \(30,59\).

d) Nếu so sánh theo độ lệch chuẩn thì số giờ nắng trong tháng 6 của Nha Trang đồng đều hơn.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai. Cỡ mẫu: \(n = 20\).

Gọi \({x_1};{x_2}; \ldots ;{x_{20}}\) là mẫu số liệu gốc về số giờ nắng trong tháng 6 trong 20 năm của Nha Trang được xếp theo thứ tự không giảm.

Ta có: \({x_1} \in \left[ {130;160} \right);{x_2} \in \left[ {160;190} \right);{x_3} \in \left[ {190;220} \right);{x_4}; \ldots ;{x_{11}} \in \left[ {220;250} \right);{x_{12}}; \ldots ;\)

\({x_{18}} \in \left[ {250;280} \right){\rm{; }}{x_{19}};{x_{20}} \in \left[ {280;310} \right)\).

Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_5} + {x_6}} \right) \in \left[ {220;250} \right)\).

Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

\({Q_1} = 220 + \frac{{\frac{{20}}{4} - \left( {1 + 1 + 1} \right)}}{8}\left( {250 - 220} \right) = 227,5\).

Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{15}} + {x_{16}}} \right) \in \left[ {250;280} \right)\).

Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

\({Q_3} = 250 + \frac{{\frac{{3.20}}{4} - \left( {1 + 1 + 1 + 8} \right)}}{7}\left( {280 - 250} \right) = \frac{{1870}}{7}\).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = 39,64\).

b) Đúng. Gọi \({y_1};{y_2}; \ldots ;{y_{50}}\) là mẫu số liệu gốc về số giờ nắng trong tháng 6 trong 20 năm của Quy Nhơn được xếp theo thứ tự không giảm.

Ta có:

\(\begin{array}{l}{y_1}; \in \left[ {160;190} \right);{y_2};{y_3} \in \left[ {190;220} \right);{y_4}; \ldots ;{y_7} \in \left[ {220;250} \right);{y_8}; \ldots ;{y_{17}} \in \left[ {250;280} \right);\\{y_{4 = 18}}; \ldots ;{y_{20}} \in \left[ {280;310} \right)\end{array}\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{y_5} + {y_6}} \right) \in \left[ {220;250} \right)\).

Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

\[{Q'_1} = 220 + \frac{{\frac{{20}}{4} - \left( {1 + 2} \right)}}{4}\left( {250 - 220} \right) = 235\].

Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{y_{15}} + {y_{16}}} \right) \in \left[ {250;280} \right)\).

Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

\({Q'_3} = 250 + \frac{{\frac{{3.20}}{4} - \left( {1 + 2 + 4} \right)}}{{10}}\left( {280 - 250} \right) = 274\).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta '_Q} = {Q'_3} - {Q'_1} = 39\).

Vậy nếu so sánh theo khoảng tứ phân vị thì số giờ nắng trong tháng 6 của Quy Nhơn đồng đều hơn.

Xét số liệu của Nha Trang:

Số trung bình: \(\overline {{x_X}}  = \frac{{1.145 + 1.175 + 1.205 + 8.235 + 7.265 + 2.295}}{{20}} = 242,5\).

Độ lệch chuẩn: \({s_X} = \sqrt {\frac{{{{1.145}^2} + {{1.175}^2} + {{1.205}^2} + {{8.235}^2} + {{7.265}^2} + {{2.295}^2}}}{{20}} - 242,{5^2}}  \approx 35,34\).

c) Đúng. Xét số liệu của Quy Nhơn:

Số trung bình: \(\overline {{x_Y}}  = \frac{{1.175 + 2.205 + 4.235 + 10.265 + 3.295}}{{20}} = 253\).

Độ lệch chuẩn: \({s_Y} = \sqrt {\frac{{{{1.175}^2} + {{2.205}^2} + {{4.235}^2} + {{10.265}^2} + {{3.295}^2}}}{{20}} - {{253}^2}}  \approx 30,59\).

d) Sai. Vậy nếu so sánh theo độ lệch chuẩn thì số giờ nắng trong tháng 6 của Quy Nhơn đồng đều hơn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trong mẫu số liệu ghép nhóm đó, ta có: đầu mút trái của nhóm 1 là \({a_1} = 160\), đầu mút phải của nhóm 5 là \({a_6} = 175\). Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là:

\(R = {a_6} - {a_1} = 175 - 160 = 15\).

Đáp án: 15.

Lời giải

a) Cỡ mẫu là \(n = 3 + 12 + 15 + 8 = 38\). Gọi \({x_1}, \ldots ,{x_{38}}\) là thời gian chờ khám bệnh của 38 bệnh nhân này và giả sử rằng dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần. Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_{10}}\) nên nhóm chứa tứ phân vị thứ nhất là nhóm \([5;10)\) và ta có:

\({Q_1} = 5 + \left[ {\frac{{\frac{{38}}{4} - 3}}{{12}}} \right].5 \approx 7,71.\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{29}}\) nên nhóm chứa tứ phân vị thứ ba là nhóm \([10;15)\) và ta có: \({Q_3} = 10 + \left[ {\frac{{\frac{{3 \cdot 38}}{4} - 15}}{{15}}} \right].5 = 14,5.\)

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} \approx 14,5 - 7,71 = 6,79\).

b) Do \({\Delta _Q} = 6,79 < 9,23\) nên thời gian chờ của bệnh nhân tại phòng khám \(Y\) phân tán hơn thời gian chờ của bệnh nhân tại phòng khám \(X\).

Câu 4

Biểu đồ dưới đây thống kê thời gian tập thể dục buổi sáng mỗi ngày trong tháng 9/2022 của bác Bình và bác An.

Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác Bình là 25 (phút). (ảnh 1)

a) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác Bình là \(25\) (phút).

b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác An là: \({\Delta _Q} = 2\).

c) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác Bình là: \({Q_3}^\prime  = \frac{{455}}{{16}}\).

d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng mỗi ngày của bác An lớn hơn bác Bình.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \({s^2} = \sqrt 3 .\)    
B. \({s^2} = 3.\)            
C. \[{s^2} = 9.\]                                   
D. \({s^2} = 6.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP