Câu hỏi:

27/09/2025 21 Lưu

Biểu đồ dưới đây biểu diễn số lượt khách hàng đặt bàn qua hình thức trực tuyến mỗi ngày trong quý III năm 2022 của một nhà hàng. Cột thứ nhất biểu diễn số ngày có từ 1 đến dưới 6 lượt đặt bàn; cột thứ hai biểu diễn số ngày có từ 6 đến dưới 11 lượt đặt bàn;...

Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm cho bởi biểu đồ trên. (ảnh 1)

Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm cho bởi biểu đồ trên.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cỡ mẫu \(n = 92\);

Gọi \({x_1};{x_2}; \ldots ;{x_{92}}\) là mẫu số liệu gốc về số lượt khách hàng đặt bàn qua hình thức trực tuyến mỗi ngày trong quý III năm 2022 của nhà hàng được xếp theo thứ tự không giảm.

Ta có: \({x_1}; \ldots ;{x_{14}} \in [1;6);{x_{15}}; \ldots ;{x_{44}} \in [6;11);{x_{45}}; \ldots ;{x_{69}} \in [11;16);{x_{70}}; \ldots ;{x_{87}} \in [16;21);\)

\({x_{88}}; \ldots ;{x_{92}} \in [21;26)\).

Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{23}} + {x_{24}}} \right) \in [6;11)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 6 + \frac{{\frac{{92}}{4} - 14}}{{30}}\left( {11 - 6} \right) = 7,5\).

Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{69}} + {x_{70}}} \right) \in [11;16)\) và \([16;21)\).

Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 16\).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = 8,5\).

Đáp án: 8,5.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trong mẫu số liệu ghép nhóm đó, ta có: đầu mút trái của nhóm 1 là \({a_1} = 160\), đầu mút phải của nhóm 5 là \({a_6} = 175\). Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là:

\(R = {a_6} - {a_1} = 175 - 160 = 15\).

Đáp án: 15.

Lời giải

a) Cỡ mẫu là \(n = 3 + 12 + 15 + 8 = 38\). Gọi \({x_1}, \ldots ,{x_{38}}\) là thời gian chờ khám bệnh của 38 bệnh nhân này và giả sử rằng dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần. Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_{10}}\) nên nhóm chứa tứ phân vị thứ nhất là nhóm \([5;10)\) và ta có:

\({Q_1} = 5 + \left[ {\frac{{\frac{{38}}{4} - 3}}{{12}}} \right].5 \approx 7,71.\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{29}}\) nên nhóm chứa tứ phân vị thứ ba là nhóm \([10;15)\) và ta có: \({Q_3} = 10 + \left[ {\frac{{\frac{{3 \cdot 38}}{4} - 15}}{{15}}} \right].5 = 14,5.\)

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} \approx 14,5 - 7,71 = 6,79\).

b) Do \({\Delta _Q} = 6,79 < 9,23\) nên thời gian chờ của bệnh nhân tại phòng khám \(Y\) phân tán hơn thời gian chờ của bệnh nhân tại phòng khám \(X\).

Câu 5

Biểu đồ dưới đây thống kê thời gian tập thể dục buổi sáng mỗi ngày trong tháng 9/2022 của bác Bình và bác An.

Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác Bình là 25 (phút). (ảnh 1)

a) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác Bình là \(25\) (phút).

b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác An là: \({\Delta _Q} = 2\).

c) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác Bình là: \({Q_3}^\prime  = \frac{{455}}{{16}}\).

d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng mỗi ngày của bác An lớn hơn bác Bình.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({s^2} = \sqrt 3 .\)    
B. \({s^2} = 3.\)            
C. \[{s^2} = 9.\]                                   
D. \({s^2} = 6.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP