Xét tính tăng, giảm và bị chặn của dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 1 + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + \ldots + \frac{1}{{{n^2}}}\).
Xét tính tăng, giảm và bị chặn của dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 1 + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + \ldots + \frac{1}{{{n^2}}}\).
Câu hỏi trong đề: Đề kiểm tra Dãy số (có lời giải) !!
Quảng cáo
Trả lời:

Ta có: \({u_n} = 1 + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + \ldots + \frac{1}{{{n^2}}};{u_{n + 1}} = 1 + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + \ldots + \frac{1}{{{n^2}}} + \frac{1}{{{{(n + 1)}^2}}}\).
Suy ra \({u_{n + 1}} - {u_n} = \frac{1}{{{{(n + 1)}^2}}} > 0,\forall n \in {\mathbb{N}^*}\). Suy ra \(\left( {{u_n}} \right)\) là dãy số tăng.
Do \({u_n} < 1 + \frac{1}{{1.2}} + \frac{1}{{2.3}} + \ldots + \frac{1}{{(n - 1)n}} = 2 - \frac{1}{n}\), suy ra \(1 < {u_n} < 2,\forall n \in {\mathbb{N}^*}\).
Suy ra \(\left( {{u_n}} \right)\) là dãy số bị chặn.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C
Lời giải
a) Sai |
b) Sai |
c) Đúng |
d) Đúng |
Với \(k\) là số nguyên dương, ta có:
\(\frac{1}{{(2k - 1) \cdot (2k + 1)}} = \frac{1}{2}\left[ {\frac{{(2k + 1) - (2k - 1)}}{{(2k - 1) \cdot (2k + 1)}}} \right] = \frac{1}{2}\left( {\frac{1}{{(2k - 1)}} - \frac{1}{{(2k + 1)}}} \right)\).
Khi đó: \({u_n} = \frac{1}{2}\left[ {\left( {\frac{1}{1} - \frac{1}{3}} \right) + \left( {\frac{1}{3} - \frac{1}{5}} \right) + \left( {\frac{1}{5} - \frac{1}{7}} \right) + \ldots + \left( {\frac{1}{{(2n - 1)}} - \frac{1}{{(2n + 1)}}} \right)} \right]\)
\( = \frac{1}{2}\left[ {1 - \frac{1}{{(2n + 1)}}} \right] = \frac{n}{{2n + 1}}\).
Vậy \({u_n} = \frac{n}{{2n + 1}}\), với mọi \(n \in \mathbb{N}*\).
Áp dụng công thức số hạng tổng quát ta có:
\(\begin{array}{l}{u_{2021}} = \frac{{2021}}{{2.2021 + 1}} = \frac{{2021}}{{4043}}\\{u_{2022}} = \frac{{2022}}{{2.2022 + 1}} = \frac{{2022}}{{4045}}\\{u_{2023}} = \frac{{2023}}{{2.2023 + 1}} = \frac{{2023}}{{4047}}.\\{u_{2024}} = \frac{{2024}}{{2.2024 + 1}} = \frac{{2024}}{{4049}}.\end{array}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.