Phần 1. Câu hỏi trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi, thí sinh chỉ chọn 1 phương án.
Ba số \( - \sqrt 3 \,;\,\,x\,;\, - 3\sqrt 3 \) theo thứ tự là ba số hạng liên tiếp của một cấp số nhân. Tìm công bội \(q\) của cấp số nhân đó.
Phần 1. Câu hỏi trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi, thí sinh chỉ chọn 1 phương án.
Ba số \( - \sqrt 3 \,;\,\,x\,;\, - 3\sqrt 3 \) theo thứ tự là ba số hạng liên tiếp của một cấp số nhân. Tìm công bội \(q\) của cấp số nhân đó.Câu hỏi trong đề: Đề kiểm tra Cấp số nhân (có lời giải) !!
Quảng cáo
Trả lời:

Chọn D Do \( - \sqrt 3 \,;\,x\,\,;\,\, - 3\sqrt 3 \) là một cấp số nhân \( \Rightarrow {x^2} = 9 \Leftrightarrow x = \pm 3\).
Vậy công bội của cấp số nhân là \(q = \frac{x}{{ - \sqrt 3 }} = \pm \sqrt 3 \).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng |
b) Đúng |
c) Sai |
d) Sai |
a) Gọi \(q\) là công bội của cấp số nhân \(\left( {{u_n}} \right)\).
Theo giả thiết, ta có: \(\left\{ {\begin{array}{*{20}{l}}{{u_1}{q^3} = \frac{2}{{27}}}\\{{u_1}{q^2} = 243 \cdot {u_1}{q^7}}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{u_1}{q^3} = \frac{2}{{27}}}\\{{q^5} = \frac{1}{{243}}}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{q = \frac{1}{3}}\\{{u_1} = 2}\end{array}} \right.} \right.} \right.\)
Năm số hạng đầu của \(\left( {{u_n}} \right)\) là: \({u_1} = 2;{u_2} = \frac{2}{3};{u_3} = \frac{2}{9};{u_4} = \frac{2}{{27}};{u_5} = \frac{2}{{81}}\).
c) Số hạng tổng quát của cấp số nhân: \({u_n} = {u_1}{q^{n - 1}} = \frac{2}{{{3^{n - 1}}}}\).
Xét \({u_n} = \frac{2}{{6561}} \Rightarrow \frac{2}{{{3^{n - 1}}}} = \frac{2}{{6561}}\)
\( \Rightarrow {3^{n - 1}} = 6561 = {3^8} \Rightarrow n = 9.\)
Vậy \(\frac{2}{{6561}}\) là số hạng thứ 9 của cấp số nhân \(\left( {{u_n}} \right)\).
d) Tổng chín số hạng đầu của cấp số nhân là: \({S_9} = \frac{{{u_1}\left( {1 - {q^9}} \right)}}{{1 - q}} = \frac{{2.\left( {1 - {{\left( {\frac{1}{3}} \right)}^9}} \right)}}{{1 - \frac{1}{3}}} \approx 2,99985 < 3\).
Câu 2
Lời giải
Chọn B
Ta có \(\left\{ \begin{array}{l}q = \frac{1}{4}\\\frac{1}{2} = {u_7} = {u_1}{q^6} = \frac{{{u_1}}}{{{4^6}}}\end{array} \right. \Rightarrow {u_1} = \frac{{{4^6}}}{2} = 2048\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.