Câu hỏi:

05/10/2025 14 Lưu

Một người chơi nhảy bungee trên một cây cầu với một sợi dây dài \(100\;m\). Sau mỗi lần rơi xuống, người chơi được kéo lên một quãng đường có độ dài bằng \(80\% \) so với lần rơi trước và lại rơi xuống đúng bằng quãng đường vừa được kéo lên. Tính tổng quãng đường đi lên của người đó sau 10 lần được kéo lên.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

\({S_{10}} = \frac{{80\left( {1 - 0,{8^{10}}} \right)}}{{1 - 0,8}} \approx 357,05(\;m)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Đúng

c) Sai

d) Sai

 

a) Gọi \(q\) là công bội của cấp số nhân \(\left( {{u_n}} \right)\).

Theo giả thiết, ta có: \(\left\{ {\begin{array}{*{20}{l}}{{u_1}{q^3} = \frac{2}{{27}}}\\{{u_1}{q^2} = 243 \cdot {u_1}{q^7}}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{u_1}{q^3} = \frac{2}{{27}}}\\{{q^5} = \frac{1}{{243}}}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{q = \frac{1}{3}}\\{{u_1} = 2}\end{array}} \right.} \right.} \right.\)

Năm số hạng đầu của \(\left( {{u_n}} \right)\) là: \({u_1} = 2;{u_2} = \frac{2}{3};{u_3} = \frac{2}{9};{u_4} = \frac{2}{{27}};{u_5} = \frac{2}{{81}}\).

c) Số hạng tổng quát của cấp số nhân: \({u_n} = {u_1}{q^{n - 1}} = \frac{2}{{{3^{n - 1}}}}\).

Xét \({u_n} = \frac{2}{{6561}} \Rightarrow \frac{2}{{{3^{n - 1}}}} = \frac{2}{{6561}}\)

\( \Rightarrow {3^{n - 1}} = 6561 = {3^8} \Rightarrow n = 9.\)

Vậy \(\frac{2}{{6561}}\) là số hạng thứ 9 của cấp số nhân \(\left( {{u_n}} \right)\).

d) Tổng chín số hạng đầu của cấp số nhân là: \({S_9} = \frac{{{u_1}\left( {1 - {q^9}} \right)}}{{1 - q}} = \frac{{2.\left( {1 - {{\left( {\frac{1}{3}} \right)}^9}} \right)}}{{1 - \frac{1}{3}}} \approx 2,99985 < 3\).

Lời giải

a) Sai

b) Sai

c) Đúng

d) Đúng

 

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{{u_1} + {u_2} + {u_3} = 168}\\{{u_4} + {u_5} + {u_6} = 21}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{u_1} + {u_1} \cdot q + {u_1} \cdot {q^2} = 168}\\{{u_1} \cdot {q^3} + {u_1} \cdot {q^4} + {u_1} \cdot {q^5} = 21}\end{array}} \right.} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{u_1}(1 + q + {q^2}) = 168}\\{{u_1}{q^3}(1 + q + {q^2}) = 21}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{u_1} = \frac{{168}}{{1 + q + {q^2}}}}\\{{q^3} = \frac{1}{8}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{u_1} = 96}\\{q = \frac{1}{2}}\end{array}.} \right.} \right.} \right.\)

Ta có \(24 = 96.{\left( {\frac{1}{2}} \right)^{3 - 1}}\)

Ta có \({S_{10}} = \frac{{{u_1}\left( {1 - {q^{10}}} \right)}}{{1 - q}} = \frac{{96\left[ {1 - {{(\frac{1}{2})}^{10}}} \right]}}{{1 - \frac{1}{2}}} = \frac{{3069}}{{16}}\)

Câu 3

A. 4096.                     
B. 2048.                   
C. 1024.                         
D. \(\frac{1}{{512}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(16.\).                  
B. \( - 2.\).                
C. \(2.\).                          
D. \( \pm 2.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP