Các bệnh truyền nhiễm có thể lây lan rất nhanh. Giả sử có năm người bị bệnh trong tuần đầu tiên của một đợt dịch, và mỗi người bị bệnh sê lây bệnh cho bốn người vào cuối tuần tiếp theo. Tính đến hết tuần thứ 10 của đợt dịch, có bao nhiêu người đã bị lây bởi căn bệnh này?
Các bệnh truyền nhiễm có thể lây lan rất nhanh. Giả sử có năm người bị bệnh trong tuần đầu tiên của một đợt dịch, và mỗi người bị bệnh sê lây bệnh cho bốn người vào cuối tuần tiếp theo. Tính đến hết tuần thứ 10 của đợt dịch, có bao nhiêu người đã bị lây bởi căn bệnh này?
Câu hỏi trong đề: Đề kiểm tra Cấp số nhân (có lời giải) !!
Quảng cáo
Trả lời:

Gọi \({u_n}\) là số người bị bệnh ở cuối tuần thứ \(n\). Vì có năm người bị bệnh trong tuần đầu tiên của một đợt dịch, và mỗi người bị bệnh sẽ lây bệnh cho bốn người vào cuối tuần tiếp theo nên dãy số \(\left( {{u_n}} \right)\) là một cấp số nhân có \({u_1} = 5\) và công bội \(q = 4\). Suy ra số người bị ảnh hưởng bởi dịch bệnh ở cuối tuần 10 là \({u_{10}} = {u_1}{q^9} = 5 \cdot {4^9} = 1310720\) (người).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng |
b) Đúng |
c) Sai |
d) Sai |
a) Gọi \(q\) là công bội của cấp số nhân \(\left( {{u_n}} \right)\).
Theo giả thiết, ta có: \(\left\{ {\begin{array}{*{20}{l}}{{u_1}{q^3} = \frac{2}{{27}}}\\{{u_1}{q^2} = 243 \cdot {u_1}{q^7}}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{u_1}{q^3} = \frac{2}{{27}}}\\{{q^5} = \frac{1}{{243}}}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{q = \frac{1}{3}}\\{{u_1} = 2}\end{array}} \right.} \right.} \right.\)
Năm số hạng đầu của \(\left( {{u_n}} \right)\) là: \({u_1} = 2;{u_2} = \frac{2}{3};{u_3} = \frac{2}{9};{u_4} = \frac{2}{{27}};{u_5} = \frac{2}{{81}}\).
c) Số hạng tổng quát của cấp số nhân: \({u_n} = {u_1}{q^{n - 1}} = \frac{2}{{{3^{n - 1}}}}\).
Xét \({u_n} = \frac{2}{{6561}} \Rightarrow \frac{2}{{{3^{n - 1}}}} = \frac{2}{{6561}}\)
\( \Rightarrow {3^{n - 1}} = 6561 = {3^8} \Rightarrow n = 9.\)
Vậy \(\frac{2}{{6561}}\) là số hạng thứ 9 của cấp số nhân \(\left( {{u_n}} \right)\).
d) Tổng chín số hạng đầu của cấp số nhân là: \({S_9} = \frac{{{u_1}\left( {1 - {q^9}} \right)}}{{1 - q}} = \frac{{2.\left( {1 - {{\left( {\frac{1}{3}} \right)}^9}} \right)}}{{1 - \frac{1}{3}}} \approx 2,99985 < 3\).
Lời giải
a) Sai |
b) Sai |
c) Đúng |
d) Đúng |
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{{u_1} + {u_2} + {u_3} = 168}\\{{u_4} + {u_5} + {u_6} = 21}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{u_1} + {u_1} \cdot q + {u_1} \cdot {q^2} = 168}\\{{u_1} \cdot {q^3} + {u_1} \cdot {q^4} + {u_1} \cdot {q^5} = 21}\end{array}} \right.} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{u_1}(1 + q + {q^2}) = 168}\\{{u_1}{q^3}(1 + q + {q^2}) = 21}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{u_1} = \frac{{168}}{{1 + q + {q^2}}}}\\{{q^3} = \frac{1}{8}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{u_1} = 96}\\{q = \frac{1}{2}}\end{array}.} \right.} \right.} \right.\)
Ta có \(24 = 96.{\left( {\frac{1}{2}} \right)^{3 - 1}}\)
Ta có \({S_{10}} = \frac{{{u_1}\left( {1 - {q^{10}}} \right)}}{{1 - q}} = \frac{{96\left[ {1 - {{(\frac{1}{2})}^{10}}} \right]}}{{1 - \frac{1}{2}}} = \frac{{3069}}{{16}}\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.