Cho cấp số cộng \(({u_n})\) thỏa: \(\left\{ \begin{array}{l}{u_5} + 3{u_3} - {u_2} = - 21\\3{u_7} - 2{u_4} = - 34\end{array} \right.\).
a) Công sai của cấp số cộng là \(d = - 3\)
b) Số hạng thứ 100 của cấp số là \({u_{100}} = - 290\)
c) Tổng 15 số hạng đầu của cấp số bằng \( - 285\)
d) Tổng \(S = {u_4} + {u_5} + ... + {u_{30}} = - 1542\).
Cho cấp số cộng \(({u_n})\) thỏa: \(\left\{ \begin{array}{l}{u_5} + 3{u_3} - {u_2} = - 21\\3{u_7} - 2{u_4} = - 34\end{array} \right.\).
a) Công sai của cấp số cộng là \(d = - 3\)
b) Số hạng thứ 100 của cấp số là \({u_{100}} = - 290\)
c) Tổng 15 số hạng đầu của cấp số bằng \( - 285\)
d) Tổng \(S = {u_4} + {u_5} + ... + {u_{30}} = - 1542\).
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương II (có lời giải) !!
Quảng cáo
Trả lời:

a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
a) Từ giả thiết bài toán, ta có: \(\left\{ \begin{array}{l}{u_1} + 4d + 3({u_1} + 2d) - ({u_1} + d) = - 21\\3({u_1} + 6d) - 2({u_1} + 3d) = - 34\end{array} \right.\)
b) Số hạng thứ 100 của cấp số: \({u_{100}} = {u_1} + 99d = - 295\)
c) Tổng của 15 số hạng đầu: \({S_{15}} = \frac{{15}}{2}\left[ {2{u_1} + 14d} \right] = - 285\)
d) Ta có: \(S = {u_4} + {u_5} + ... + {u_{30}} = \frac{{27}}{2}\left[ {2{u_4} + 26d} \right]\)
\( = 27\left( {{u_1} + 16d} \right) = - 1242\).
Chú ý: Ta có thể tính \(S\) theo cách sau:
\(S = {S_{30}} - {S_3} = 15\left( {2{u_1} + 29d} \right) - \frac{3}{2}\left( {2{u_1} + 2d} \right) = - 1242\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng |
b) Đúng |
c) Sai |
d) Đúng |
Ta có năm số hạng đầu của dãy
\({u_1} = \frac{{{1^2} + 3.1 + 7}}{{1 + 1}} = \frac{{11}}{2}\), \({u_2} = \frac{{17}}{3},{u_3} = \frac{{25}}{4},{u_4} = 7,{u_5} = \frac{{47}}{6}\)
Ta có: \({u_n} = n + 2 + \frac{5}{{n + 1}}\), do đó \({u_n}\) nguyên khi và chỉ khi \(\frac{5}{{n + 1}}\) nguyên hay \(n + 1\) là ước của 5.
Điều đó xảy ra khi \(n + 1 = 5 \Leftrightarrow n = 4\)
Vậy dãy số có duy nhất một số hạng nguyên là \({u_4} = 7\)
Lời giải
\({u_3} = 2{u_2} + 3{u_1} + 5 = 12\) \({u_4} = 2{u_3} + 3{u_2} + 5 = 35\) \({u_5} = 2{u_4} + 3{u_3} + 5 = 111\)
\({u_6} = 2{u_5} + 3{u_4} + 5 = 332\) \({u_7} = 2{u_6} + 3{u_5} + 5 = 1002\) \({u_8} = 2{u_7} + 3{u_6} + 5 = 3005\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.