Câu hỏi:

05/10/2025 2,244 Lưu

Dựa vào bảng tần số mẫu số liệu ghép nhóm sau, hãy tìm tứ phân vị của nó.

Nhóm

\([30;40)\)

\([40;50)\)

\([50;60)\)

\([60;70)\)

\([70;80)\)

\([80;90)\)

Tần số

2

10

16

8

2

2

a) Cỡ mẫu của mẫu số liệu là \(n = 40\).

b) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 48\)

c) Tứ phân vị thứ hai của mẫu số liệu ghép nhóm là:\({Q_2} = 45\)

d) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \[{Q_3} = 61,5\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Đúng

c) Sai

d) Sai

 

Cỡ mẫu của mẫu số liệu là \(n = 40\).

Gọi \({x_1},{x_2},{x_3}, \ldots ,{x_{40}}\) là mẫu số liệu được xếp theo thứ tự không giảm.

Trung vị của mẫu số liệu: \(\frac{{{x_{20}} + {x_{21}}}}{2} \in [50;60)\).

Ta có: \({n_m} = 16;{C_2} = 2 + 10 = 12;{u_m} = 50;{u_{n + 1}} = 60\).

Tứ phân vị thứ hai của mẫu số liệu ghép nhóm cũng là trung vị của mẫu số liệu đó là:

\({Q_2} = {M_e} = 50 + \frac{{\frac{{40}}{2} - 12}}{{16}}(60 - 50) = 55\)

Xét nửa mẫu số liệu bên trái \({x_1},{x_2},{x_3}, \ldots ,{x_{20}}\) có trung vị \(\frac{{{x_{10}} + {x_{11}}}}{2} \in [40;50)\).

Ta có: \({n_i} = 10;{C_1} = 2;{u_i} = 40;{u_{i + 1}} = 50\).

Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

\({Q_1} = 40 + \frac{{\frac{{40}}{4} - 2}}{{10}}(50 - 40) = 48\)

Xét nửa mẫu số liệu bên phải \({x_{21}},{x_{22}},{x_{23}}, \ldots ,{x_{40}}\) có trung vị \(\frac{{{x_{30}} + {x_{31}}}}{2} \in [60;70)\).

Ta có: \({n_j} = 8;{C_3} = 2 + 10 + 16 = 28;{u_j} = 60;{u_{j + 1}} = 70\).

Tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

\({Q_3} = 60 + \frac{{\frac{{3.40}}{4} - 28}}{8}(70 - 60) = 62,5\)

Vậy tứ phân vị của mẫu số liệu ghép nhóm trên là:

\({Q_1} = 48,{Q_2} = 55,{Q_3} = 62,5.{\rm{ }}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cỡ mẫu: \(n = 13 + 35 + 47 + 25 = 120\). Số công nhân có mức thưởng tết từ 15 đến dưới 20 triệu đồng là nhiều nhất nên nhóm chứa mốt là nhóm \[\left[ {15;{\rm{ }}20} \right).\]

Ta có, \({a_j} = 15;{m_j} = 47;{m_{j - 1}} = 35;{m_{j + 1}} = 25;h = 5\). Do đó, mốt của mẫu số liệu là M°=15+(4735)(4735)+(4725)516,76

Ý nghĩa. Số công nhân nhận được mức thưởng tết khoảng 16,76 triệu đồng là cao nhất.

Câu 2

A. \[7,73\].                               

B. \[6,12\].               
C. \[5,09\].                      
D. \[7,03\].

Lời giải

Áp dụng công thức tính mốt \[{M_0} = u + \left( {\frac{{{n_i} - {n_{i - 1}}}}{{2{n_i} - {n_{i - 1}} - {n_{i + 1}}}}} \right).g\]

Với \(i = 4,\;u = 7,\;g = 2,\;\;{n_4} = 14,\;{n_3} = 10,\;{n_5} = 7\). Ta có

\[{M_0} = 7 + \left( {\frac{{14 - 10}}{{2.14 - 10 - 7}}} \right).2 = 7,73\].

Câu 5

A. \(225\).                  
B. \(158\).                
C. \(255\).                       
D. \(202\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP