Cho tứ diện ABCD. Gọi \(I,J\) lần lượt là trung điểm của \(AD,BC\), \(M\) là một điểm trên cạnh \(AB,N\) là một điểm trên cạnh \(AC\). Khi đó:
a) \[IJ\] là giao tuyến của hai mặt phẳng \((IBC),(JAD)\).
b) \(ND\) là giao tuyến của hai mặt phẳng \((MND),(ADC)\).
c) \(BI\) là giao tuyến của hai mặt phẳng \((BCI),(ABD)\).
d) Giao tuyến của hai mặt phẳng \((IBC),(DMN)\) song song với đường thẳng \[IJ\].
Cho tứ diện ABCD. Gọi \(I,J\) lần lượt là trung điểm của \(AD,BC\), \(M\) là một điểm trên cạnh \(AB,N\) là một điểm trên cạnh \(AC\). Khi đó:
a) \[IJ\] là giao tuyến của hai mặt phẳng \((IBC),(JAD)\).
b) \(ND\) là giao tuyến của hai mặt phẳng \((MND),(ADC)\).
c) \(BI\) là giao tuyến của hai mặt phẳng \((BCI),(ABD)\).
d) Giao tuyến của hai mặt phẳng \((IBC),(DMN)\) song song với đường thẳng \[IJ\].
Quảng cáo
Trả lời:
![Cho tứ diện ABCD. Gọi \(I,J\) lần lượt là trung điểm của \(AD,BC\), \(M\) là một điểm trên cạnh \(AB,N\) là một điểm trên cạnh \(AC\). Khi đó: a) \[IJ\] là giao tuyến của hai mặt phẳng \((IBC),(JAD)\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/12-1759678661.png)
a) Ta có: \(I \in AD,AD \subset (JAD) \Rightarrow I \in (JAD) \Rightarrow IJ \subset (JAD)\); \(J \in BC,BC \subset (IBC) \Rightarrow J \in (IBC) \Rightarrow IJ \subset (IBC)\). Vậy \((IBC) \cap (JAD) = IJ\).
b) \(ND\) là giao tuyến của hai mặt phẳng \((MND),(ADC)\).
c) \(BI\) là giao tuyến của hai mặt phẳng \((BCI),(ABD)\).
d) Gọi \(E = DN \cap CI(\) trong \(mp(ACD))\) và \(F = DM \cap BI(\) trong \(mp(ABD))\).
\(\begin{array}{l}{\rm{ Ta c\'o : }}\left\{ {\begin{array}{*{20}{l}}{E \in DN,DN \subset (DMN)}\\{E \in IC,IC \subset (IBC)}\end{array}} \right.\\ \Rightarrow E \in (DMN) \cap (IBC).(1)\end{array}\)
Tương tự: \(\left\{ {\begin{array}{*{20}{l}}{F \in DM,DM \subset (DMN)}\\{F \in BI,BI \subset (IBC)}\end{array} \Rightarrow F \in (DMN) \cap (IBC)} \right.\).
Từ (1) và \((2)\) suy ra \((DMN) \cap (IBC) = EF\).
Khi đó \[EF\] cắt \[IJ\]
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B

Gọi \(M = JK \cap AD\), \(N = JK \cap AB\), \(F = IN \cap SB\) và \(E = JKIM \cap SD\).
Khi đó, mặt phẳng \(\left( {IJK} \right)\) cắt hình chóp \(S.ABCD\) theo thiết diện là ngũ giác \(IFJKE\).
Câu 2
Lời giải
Chọn D

Dễ thấy \(OM\) không đồng phẳng với \(BC\) và \(MN\) cũng không đồng phẳng với \(BC\). Vậy cả A và B đều sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.