Câu hỏi:

06/10/2025 2,084 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang \((AB//CD)\). Gọi \(E,F,G\) lần lượt là trung điểm của các cạnh \(SA,AD,BC\) (H.4.24).

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang \((AB//CD)\). Gọi \(E,F,G\) lần lượt là trung điểm của các cạnh \(SA,AD,BC\) (H.4.24).    Chứng minh rằng hai mặt phẳng \((EFG)\) và \((SCD)\) song song với nhau. (ảnh 1)

 Chứng minh rằng hai mặt phẳng \((EFG)\)\((SCD)\) song song với nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(EF\) là đường trung bình của tam giác \(SAD\) nên \(EF//SD\). Vì \(EF\) không nằm trong mặt phẳng \((SCD)\) nên \(EF//(SCD)\).

\(FG\) là đường trung bình của hình thang \(ABCD\) nên \(FG//CD\). Vì \(FG\) không nằm trong mặt phẳng \((SCD)\) nên \(FG//(SCD)\).

Mặt phẳng \((EFG)\) chứa hai đường thẳng cắt nhau \(EF\)\(FG\) cùng song song với mặt phẳng \((SCD)\) nên mặt phẳng \((EFG)\) song song với mặt phẳng \((SCD)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho lăng trụ tam giác \(ABC \cdot {A^\prime }{B^\prime }{ (ảnh 1)

a) b) Ta có \({I^\prime },I\) là trung điểm của \({B^\prime }{C^\prime }\)\(BC\).

Suy ra \(I{I^\prime }\) là đường trung bình của hình bình hành \(B{B^\prime }{C^\prime }C\).

Suy ra \(I{I^\prime } = B{B^\prime }\)\(I{I^\prime }//B{B^\prime }\).

Ta có \(\left\{ {\begin{array}{*{20}{l}}{I{I^\prime }//A{A^\prime }\left( {//B{B^\prime }} \right)}\\{I{I^\prime } = A{A^\prime }\left( { = B{B^\prime }} \right)}\end{array}} \right.\)

\( \Rightarrow A{A^\prime }{I^\prime }I\) là hình bình hành. \( \Rightarrow AI//{A^\prime }{I^\prime }\).

c) Trong ( \(\left. {IA{A^\prime }{I^\prime }} \right)\), gọi \(E = A{I^\prime } \cap {A^\prime }I\).

Suy ra \(\left\{ {\begin{array}{*{20}{l}}{E \in A{I^\prime };A{I^\prime } \subset \left( {A{B^\prime }{C^\prime }} \right)}\\{E \in {A^\prime }I}\end{array} \Rightarrow } \right.\) Suy ra \(E = {A^\prime }I \cap \left( {A{B^\prime }{C^\prime }} \right)\).

d) Tìm giao tuyến của \(\left( {A{B^\prime }{C^\prime }} \right)\)\(\left( {{A^\prime }B{C^\prime }} \right)\).

Trong \(\left( {A{A^\prime }{B^\prime }B} \right)\), gọi \(F = A{B^\prime } \cap {A^\prime }B\).

FAB';AB'AB'C'FA'B;A'BA'BC'FAB'C'A'BC'(1)

Ta có \(E = A{I^\prime } \cap {A^\prime }I\).

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{E \in A{I^\prime };A{I^\prime } \subset \left( {A{B^\prime }{C^\prime }} \right)}\\{E \in {A^\prime }I;{A^\prime }I \subset \left( {{A^\prime }B{C^\prime }} \right)}\end{array} \Rightarrow E \in \left( {A{B^\prime }{C^\prime }} \right) \cap \left( {{A^\prime }B{C^\prime }} \right)(2)} \right.\)

Từ (1) và (2) suy ra \(EF = \left( {A{B^\prime }{C^\prime }} \right) \cap \left( {{A^\prime }B{C^\prime }} \right)\).

Lời giải

Chọn B

Khi đó \[\left( P \right)\]cắt hình chóp \[S.ABC\]theo thiết diện là tam giác \[MNP\]đồng dạng với tam giác \[ABC\]theo tỉ số \[k = \frac{2}{3}.\]Vậy \[{S_{\Delta MNP}} = {k^2}.{S_{\Delta ABC}} = {\left( {\frac{2}{3}} \right)^2}.3 = \frac{4}{3}.\] (ảnh 1)

Diện tích tam giác \[ABC\]là \[{S_{\Delta ABC}} = \frac{1}{2}.AB.AC.\sin \widehat {BAC} = \frac{1}{2}.2\sqrt 3 .2\sqrt 3 .\sin {30^0} = 3.\]

Gọi \[N,\,\,P\]lần lượt là giao điểm của mặt phẳng \[\left( P \right)\]và các cạnh \[\,SC\]và \(SB\).

Vì \[\left( P \right)\]//\[\left( {ABC} \right)\] nên theo định lí Talet, ta có \[\frac{{SM}}{{SA}} = \frac{{SN}}{{SC}} = \frac{{SP}}{{SB}} = \frac{2}{3}.\]

Khi đó \[\left( P \right)\]cắt hình chóp \[S.ABC\]theo thiết diện là tam giác \[MNP\]đồng dạng với tam giác \[ABC\]theo tỉ số \[k = \frac{2}{3}.\]Vậy \[{S_{\Delta MNP}} = {k^2}.{S_{\Delta ABC}} = {\left( {\frac{2}{3}} \right)^2}.3 = \frac{4}{3}.\]

Câu 4

Phần 3. Câu hỏi trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang với đáy lớn \(AD\). Gọi \(M\) là trọng tâm của tam giác \(SAD,N\) là điểm thuộc đoạn thẳng \(AC\) sao cho \(AN = \frac{1}{3}AC,P\) là điểm thuộc đoạn thẳng \(CD\) sao cho \(DP = \frac{1}{3}DC\). Chứng minh rằng \((MNP)//(SBC)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Nếu (P) (Q) cùng cắt a thì (P) song song với (Q).              
B. Nếu (P) (Q) cùng song song với a thì (P) song song với (Q).              
C. Nếu (P) song song với (Q ) a nằm trong mp (P) thì a song song với (Q).              
D. Nếu (P) song song với (Q ) a cắt (P) thì a song song với (Q).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP