Câu hỏi:

06/10/2025 8 Lưu

Giới hạn của dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{2n - 1}}{{3 - n}},n \in {\mathbb{N}^*}\) là:

A. \[ - 2\].                 
B. \[\frac{2}{3}\].   
C. \[1\].                           
D. \[ - \frac{1}{3}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Ta có \(\lim {u_n} = \lim \frac{{2n - 1}}{{3 - n}} = \lim \frac{{2 - \frac{1}{n}}}{{\frac{3}{n} - 1}} =  - \frac{1}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(I = - \infty \).     
B. \(I = 0\).              
C. \(I = + \infty \).                     
D. \(I = 1\).

Lời giải

\(I = \lim \frac{{2n - 3}}{{2{n^2} + 3n + 1}}\)\( = \lim \frac{{{n^2}\left( {\frac{2}{n} - \frac{3}{{{n^2}}}} \right)}}{{{n^2}\left( {2 + \frac{3}{n} + \frac{1}{{{n^2}}}} \right)}}\)\( = \lim \frac{{\frac{2}{n} - \frac{3}{{{n^2}}}}}{{2 + \frac{3}{n} + \frac{1}{{{n^2}}}}}\)\( = 0\).

Lời giải

\(\mathop {\lim }\limits_{n \to + \infty } \frac{{2{n^2} + 1}}{{3{n^2} + n}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{2 + \frac{1}{{{n^2}}}}}{{3 + \frac{1}{n}}} = \frac{2}{3}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(0\).                      
B. \(\frac{1}{3}\).   
C. \( + \infty \).                               
D. \(\frac{1}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP