Câu hỏi:

06/10/2025 10 Lưu

Tính được các giới hạn sau, khi đó:

a) \(\lim {\left( {\frac{2}{3}} \right)^n} = 0\)

b) \(\lim \frac{1}{{{{(\sqrt 2 )}^n}}} = - \infty \)

c) \(\lim \frac{1}{{{n^3}}} = 0\)

d) \(\lim 4 = 0\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Sai

c) Đúng

d) Sai

 

a) \(\lim {\left( {\frac{2}{3}} \right)^n} = 0\,\) \(\left( {{\rm{do}}\,\frac{2}{3} < 1} \right)\)

b) \(\lim \frac{1}{{{{(\sqrt 2 )}^n}}} = \lim {\left( {\frac{1}{{\sqrt 2 }}} \right)^n} = 0\,\left( {{\rm{do}}\,\frac{1}{{\sqrt 2 }}\, < 1} \right)\)

c) \(\lim \frac{1}{{{n^3}}} = 0\)

d) \(\lim 4 = 4\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(I = - \infty \).     
B. \(I = 0\).              
C. \(I = + \infty \).                     
D. \(I = 1\).

Lời giải

\(I = \lim \frac{{2n - 3}}{{2{n^2} + 3n + 1}}\)\( = \lim \frac{{{n^2}\left( {\frac{2}{n} - \frac{3}{{{n^2}}}} \right)}}{{{n^2}\left( {2 + \frac{3}{n} + \frac{1}{{{n^2}}}} \right)}}\)\( = \lim \frac{{\frac{2}{n} - \frac{3}{{{n^2}}}}}{{2 + \frac{3}{n} + \frac{1}{{{n^2}}}}}\)\( = 0\).

Câu 2

A. \(0\).                      
B. \(\frac{1}{3}\).   
C. \( + \infty \).                               
D. \(\frac{1}{5}\).

Lời giải

Chọn A

Ta có \(\lim \frac{1}{{5n + 3}} = \lim \frac{{\frac{1}{n}}}{{5 + \frac{3}{n}}} = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP