Phần 1. Câu hỏi trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi, thí sinh chỉ chọn 1 phương án.
Cho hàm số \[f\left( x \right)\] xác định trên \[\left[ {a;b} \right]\]. Tìm mệnh đề đúng.
Phần 1. Câu hỏi trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi, thí sinh chỉ chọn 1 phương án.
Cho hàm số \[f\left( x \right)\] xác định trên \[\left[ {a;b} \right]\]. Tìm mệnh đề đúng.Câu hỏi trong đề: Đề kiểm tra Hàm số liên tục (có lời giải) !!
Quảng cáo
Trả lời:
Vì \[f\left( a \right)f\left( b \right) > 0\] nên \[f\left( a \right)\] và \[f\left( b \right)\] cùng dương hoặc cùng âm. Mà \[f\left( x \right)\] liên tục, tăng trên \[\left[ {a;b} \right]\] nên đồ thị hàm \[f\left( x \right)\] nằm trên hoặc nằm dưới trục hoành trên \[\left[ {a;b} \right]\] hay phương trình \[f\left( x \right) = 0\] không có nghiệm trong khoảng \[\left( {a;b} \right)\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Đúng |
b) Đúng |
c) Sai |
d) Sai |
Ta có: \(g(2) = \frac{2}{{2 - 1}} = 2\) và \(\mathop {\lim }\limits_{x \to 2} g(x) = \mathop {\lim }\limits_{x \to 2} \frac{2}{{x - 1}} = 2\); suy ra \(\mathop {\lim }\limits_{x \to 2} g(x) = g(2)\).
Vậy hàm số \(g(x)\) liên tục tại điểm \({x_0} = 2\).
Ta có: \(f(2) = 4,5\) và \(\mathop {\lim }\limits_{x \to 2} f(x) = \mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 4}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{(x - 2)(x + 2)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} (x + 2) = 4\).
Suy ra \(\mathop {\lim }\limits_{x \to 2} f(x) \ne f(2)\).
Vậy hàm số \(f(x)\) không liên tục tại điểm \({x_0} = 2\).
Câu 2
Lời giải
Chọn A
Tập xác định: \(D = \mathbb{R}\)
\(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\)\( = \mathop {\lim }\limits_{x \to 2} \frac{{x - 2}}{{\sqrt {x + 2} - 2}}\)\( = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {\sqrt {x + 2} + 2} \right)}}{{x - 2}}\)\( = \mathop {\lim }\limits_{x \to 2} \left( {\sqrt {x + 2} + 2} \right)\)\( = 4\)
\(f\left( 2 \right) = 4\)
\( \Rightarrow \mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right)\)
Vậy hàm số liên tục tại \(x = 2\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
.
.
.
.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.