Câu hỏi:

06/10/2025 59 Lưu

Cho hàm số \(y = f(x)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Mệnh đề nào dưới đây đúng?

A. Nếu \(f(a).f(b) > 0\) thì phương trình \(f(x) = 0\) không có nghiệm nằm trong \(\left( {a;b} \right)\).
B. Nếu \(f(a).f(b) < 0\) thì phương trình \(f(x) = 0\) có ít nhất một nghiệm nằm trong \(\left( {a;b} \right)\).
C. Nếu \(f(a).f(b) > 0\) thì phương trình \(f(x) = 0\) có ít nhất một nghiệm nằm trong \(\left( {a;b} \right)\).
D. Nếu phương trình \(f(x) = 0\) có ít nhất một nghiệm nằm trong \(\left( {a;b} \right)\) thì \(f(a).f(b) < 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Vì theo định lý 3 trang 139/sgk.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Hàm số liên tục tại \(x = 2\).                 
B. Hàm số gián đoạn tại \(x = 2\).
C. \(f\left( 4 \right) = 2\).                                                             
D. \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = 2\).

Lời giải

Chọn A

Tập xác định: \(D = \mathbb{R}\)

\(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\)\( = \mathop {\lim }\limits_{x \to 2} \frac{{x - 2}}{{\sqrt {x + 2}  - 2}}\)\( = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {\sqrt {x + 2}  + 2} \right)}}{{x - 2}}\)\( = \mathop {\lim }\limits_{x \to 2} \left( {\sqrt {x + 2}  + 2} \right)\)\( = 4\)

\(f\left( 2 \right) = 4\)

\( \Rightarrow \mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right)\)

Vậy hàm số liên tục tại \(x = 2\).

Câu 2

A. \(y\) liên tục phải tại \(x = 1\).              
B. \(y\) liên tục tại \(x = 1\).
C. \(y\) liên tục trái tại \(x = 1\).                
D. \(y\) liên tục trên \(\mathbb{R}\).

Lời giải

Chọn A

Ta có: \(y\left( 1 \right) = 1\).

Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} y = 1\); \(\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{1 - {x^3}}}{{1 - x}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{\left( {1 - x} \right)\left( {1 + x + {x^2}} \right)}}{{1 - x}} = \mathop {\lim }\limits_{x \to {1^ - }} \left( {1 + x + {x^2}} \right) = 4\)

Nhận thấy: \(\mathop {\lim }\limits_{x \to {1^ + }} y = y\left( 1 \right)\). Suy ra \(y\) liên tục phải tại \(x = 1\).

Câu 4

A. Hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm \(x = 0\) nhưng không liên tục tại điểm \(x = 0\).
B. Hàm số \(y = f\left( x \right)\)liên tục tại điểm \(x = 0\) nhưng không có đạo hàm tại điểm \(x = 0\).
C. Hàm số \(y = f\left( x \right)\) liên tục và có đạo hàm tại điểm \(x = 0\).
D. Hàm số \(y = f\left( x \right)\) không liên tục và không có đạo hàm tại điểm \(x = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP